Vẽ đường thẳng zt lấy điểm M thuộc đường thẳng zt điểm N không thuộc đường thẳng zt Vẽ tia MN
a) kể tên các góc có trong hình vẽ
b) trong các góc đó hãy chỉ ra góc bẹt
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tuy bn chưa giải xong nhưng mình cũng cảm ơn
Mọi người giúp mình với ạ
\(x+3y=5\Rightarrow x=5-3y\)
Ta có:
\(A=x^2+y^2+16y+2x\)
\(A=\left(5-3y\right)^2+y^2+16y+2\left(5-3y\right)\)
\(A=25-30y+9y^2+y^2+16y+10-6y\)
\(A=10y^2-20y+10+25\)
\(A=10\left(y-1\right)^2+25\ge5\forall y\)
Dấu "=" xảy ra khi \(y=1\Rightarrow x=2\)
Vậy \(A_{min}=25\) khi \(x=2\) và \(y=1\)
\(2P=6ab+2c\left(a+b\right)\)
\(2P=3\left(a^2+b^2+c^2\right)+6ab+2c\left(a+b\right)-3\left(a^2+b^2+c^2\right)\)
\(2P=3\left(a+b\right)^2+2c\left(a+b\right)+3c^2-3\left(a^2+b^2+c^2\right)\)
\(2P=\left(a+b+c\right)^2+2\left(a+b\right)^2+2c^2-3\left(a^2+b^2+c^2\right)\)
\(2P\ge-3\left(a^2+b^2+c^2\right)\ge-54\)
\(\Rightarrow P\ge-27\)
\(P_{min}=-27\) khi \(\left\{{}\begin{matrix}a^2+b^2+c^2=18\\a+b+c=0\\a+b=0\\c=0\end{matrix}\right.\) \(\Rightarrow\left(a;b;c\right)=\left(-3;3;0\right);\left(3;-3;0\right)\)
Tỉ số vải của cuộn A và cuộn B là:
`1/5:1/2=2/5`
Hiệu số phần bằng nhau là:
`5-2=3` (phần)
Số vải ở cuộn A là:
`12:3 xx 2=8(m)`
Số vải ở cuộn B là:
`12+8=20(m)`
ĐS: ...
1. Cuộn A có ít hơn cuộn B 12 mét:
\[
x = y - 12
\]
2. Một nửa số vải cuộn A bằng một phần năm số vải cuộn B:
\[
\frac{1}{2}x = \frac{1}{5}y
\]
\[
\frac{1}{2}x = \frac{1}{5}y
\]
\[
10 \times \frac{1}{2}x = 10 \times \frac{1}{5}y
\]
\[
5x = 2y
\]
\[
5(y - 12) = 2y
\]
\[
5y - 60 = 2y
\]
\[
5y - 2y = 60
\]
\[
3y = 60
\]
\[
y = 20
\]
Thay \( y = 20 \) vào phương trình \( x = y - 12 \):
\[
x = 20 - 12
\]
\[
x = 8
\]
Kết quả là cuộn A có 8 mét vải và cuộn B có 20 mét vải.
Độ dài cạnh đáy thứ ba của cái tủ là:
\(\sqrt{70^2+70^2}=70\sqrt{2}\left(cm\right)\)
Chu vi đáy của cái tủ là:
\(70+70+70\sqrt{2}=140+70\sqrt{2}\left(cm\right)\)
Diện tích xung quanh của của tủ là:
\(180\cdot\left(140+70\sqrt{2}\right)=25200+12600\sqrt{2}\left(cm^2\right)\)
Diện tích đáy của cái tủ là:
\(\dfrac{1}{2}\cdot70\cdot70=2450\left(cm^2\right)\)
Diện tích toàn phần của cái tủ là:
\(2\cdot2450+\left(25200+12600\sqrt{2}\right)=30100+12600\sqrt{2}\left(cm^2\right)\)
2)
\(a,8,2\times3,5+115+3,5\times1,8\\ =\left(8,2\times3,5+3,5\times1,8\right)+115\\ =3,5\times\left(8,2+1,8\right)+115\\ =3,5\times10+115\\ =35+115\\ =150\\ b,0,125\times0,12\times25\times1,7\times8\\ =\left(0,125\times8\right)\times\left(0,12\times25\right)\times1,7\\ =1\times3\times1,7\\ =3\times1,7\\ =5,1\)
Bài 1:
a: \(\left(57,17+8,63\right)\times9,5-98,44:2,3\)
=65,8x9,5-42,8
=625,1-42,8=582,3
b: \(61,35-8,6\times7,2:4,8+52,45\)
=61,35+52,45-12,9
=113,8-12,9=100,9
\(P=\dfrac{-\left(x^2+1\right)+2x^2-8x+8}{x^2+1}=-1+\dfrac{2\left(x-2\right)^2}{x^2+1}\ge-1\)
\(P_{min}=-1\) khi \(x-2=0\Rightarrow x=2\)
\(P=\dfrac{9\left(x^2+1\right)-8x^2-8x-2}{x^2+1}=9-\dfrac{2\left(2x+1\right)^2}{x^2+1}\le9\)
\(P_{max}=9\) khi \(2x+1=0\Rightarrow x=-\dfrac{1}{2}\)
\[
P = \frac{x^2 - 8x + 7}{x^2 + 1}
\]
\[
x^2 - 8x + 7 = (x^2 - 8x + 16) - 9 = (x-4)^2 - 9
\]
\[
P = \frac{(x-4)^2 - 9}{x^2 + 1}
\]
- Tại \( x = 0 \):
\[
P(0) = \frac{0^2 - 8 \times 0 + 7}{0^2 + 1} = \frac{7}{1} = 7
\]
- Tại \( x = 1 \):
\[
P(1) = \frac{1^2 - 8 \times 1 + 7}{1^2 + 1} = \frac{1 - 8 + 7}{2} = \frac{0}{2} = 0
\]
- Tại \( x = 2 \):
\[
P(2) = \frac{2^2 - 8 \times 2 + 7}{2^2 + 1} = \frac{4 - 16 + 7}{4 + 1} = \frac{-5}{5} = -1
\]
- Tại \( x = 4 \)
\[
P(4) = \frac{4^2 - 8 \times 4 + 7}{4^2 + 1} = \frac{16 - 32 + 7}{16 + 1} = \frac{-9}{17}
\]
- Tại \( x = -1 \):
\[
P(-1) = \frac{(-1)^2 - 8 \times (-1) + 7}{(-1)^2 + 1} = \frac{1 + 8 + 7}{1 + 1} = \frac{16}{2} = 8
\]
Dựa trên các giá trị đã tính, ta thấy rằng giá trị lớn nhất của \( P \) là \( 8 \) và giá trị nhỏ nhất là \( -1 \).
=> Max = 8
Min = -1
a: Các góc có trong hình vẽ là \(\widehat{zMN};\widehat{tMN};\widehat{zMt}\)
b: Góc bẹt là \(\widehat{zMt}\)