2^(x+2)-2^x=96
tìm x
giúp mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(B=\dfrac{1}{1\cdot102}+\dfrac{1}{2\cdot103}+...+\dfrac{1}{299\cdot400}\)
\(=\dfrac{1}{101}\left(\dfrac{101}{1\cdot102}+\dfrac{101}{2\cdot103}+...+\dfrac{101}{299\cdot400}\right)\)
\(=\dfrac{1}{101}\left(1-\dfrac{1}{102}+\dfrac{1}{2}-\dfrac{1}{103}+...+\dfrac{1}{299}-\dfrac{1}{400}\right)\)
\(=\dfrac{1}{101}\left(1+\dfrac{1}{2}+...+\dfrac{1}{299}-\dfrac{1}{102}-\dfrac{1}{103}-...-\dfrac{1}{400}\right)\)
\(=\dfrac{1}{101}\left(1+\dfrac{1}{2}+...+\dfrac{1}{101}-\dfrac{1}{300}-\dfrac{1}{301}-...-\dfrac{1}{400}\right)\)
Ta có: \(A=\dfrac{1}{1\cdot300}+\dfrac{1}{2\cdot301}+...+\dfrac{1}{101\cdot400}\)
\(=\dfrac{1}{299}\left(\dfrac{299}{1\cdot300}+\dfrac{299}{2\cdot301}+...+\dfrac{299}{101\cdot400}\right)\)
\(=\dfrac{1}{299}\left(1-\dfrac{1}{300}+\dfrac{1}{2}-\dfrac{1}{301}+...+\dfrac{1}{101}-\dfrac{1}{400}\right)\)
\(=\dfrac{1}{299}\left(1+\dfrac{1}{2}+...+\dfrac{1}{101}-\dfrac{1}{300}-\dfrac{1}{301}-...-\dfrac{1}{400}\right)\)
Do đó: \(\dfrac{A}{B}=\dfrac{\dfrac{1}{299}\left(1+\dfrac{1}{2}+...+\dfrac{1}{101}-\dfrac{1}{300}-\dfrac{1}{301}-...-\dfrac{1}{400}\right)}{\dfrac{1}{101}\left(1+\dfrac{1}{2}+...+\dfrac{1}{101}-\dfrac{1}{300}-\dfrac{1}{301}-...-\dfrac{1}{400}\right)}\)
\(=\dfrac{1}{299}\cdot101=\dfrac{101}{299}\)
a: Diện tích thửa ruộng là \(20\cdot18=360\left(m^2\right)\)
Chu vi thửa ruộng là \(\left(20+18\right)\cdot2=38\cdot2=76\left(mét\right)\)
b: Khối lượng thóc thu hoạch được là:
\(360:1\cdot2=720\left(kg\right)\)
Số tiền thu được là:
\(720\cdot6000=4320000\left(đồng\right)\)
ƯCLN(a;b)=56
=>\(a⋮56;b⋮56\)
mà \(a+b=224\)
nên \(\left(a;b\right)\in\left\{\left(56;168\right);\left(168;56\right);\left(112;112\right)\right\}\)
mà ƯCLN(a;b)=56
nên \(\left(a;b\right)\in\left\{\left(56;168\right);\left(168;56\right)\right\}\)
Giải:
Vì ƯCLN(a;b) = 56 nên ta có: \(\left\{{}\begin{matrix}a=56k\\b=56d\end{matrix}\right.\) (k; d) = 1; k;d \(\in\) N*
Tổng của a và b là: 56k + 56d = 224
56(k + d) = 224 ⇒ k + d = 224 : 56 ⇒ k + d = 4
Lập bảng ta có:
k + d | 4 | 4 | 4 |
k | 1 | 2 | 3 |
d | 3 | 2 | 1 |
(k; d)= 1; k; d \(\in\) N* | nhận | loại | nhận |
(a; b) | (56; 168) | (168; 56) |
Kết luận: Theo bảng trên ta có các cặp số tự nhiên (a; b) thỏa mãn đề bài lần lượt là:
(56; 168); (168; 56)
Lời giải:
$3xy+4x-6y=22$
$\Rightarrow (3xy+4x)-6y=22$
$\Rightarrow x(3y+4)-2(3y+4)=14$
$\Rightarrow (x-2)(3y+4)=14$
Với $x,y$ là số tự nhiên thì $x-2, 3y+4$ là số nguyên.
$(x-2)(3y+4)=14$ nên $3y+4$ là ước của 14. Mà $3y+4\geq 4$ với mọi $y$ tự nhiên nên $3y+4=7$ hoặc $3y+4=14$
Nếu $3y+4=7\Rightarrow y=1$. $x-2=\frac{14}{7}=2\Rightarrow x=4$ (tm)
Nếu $3y+4=14\Rightarrow y=\frac{10}{3}\not\in\mathbb{N}$ (loại)
Vậy...........
Gọi số học sinh khối 6 là x(bạn)
(Điều kiện: \(x\in Z^+\))
Vì số học sinh nằm trong khoảng từ 350 đến 400 nên \(x\in\left\{350;351;...;400\right\}\)
Số học sinh này khi xếp thành hàng 10 thì dư 5 bạn nên x có chữ số tận cùng là 5
mà 350<=x<=400
nên \(x\in\left\{355;365;375;385;395\right\}\)
Số học sinh khi xếp thành hàng 8 thì dư 3 bạn
mà \(x\in\left\{355;365;375;385;395\right\}\)
nên \(x\in\left\{355;395\right\}\)
Số học sinh khi chia thành mỗi hàng 12 bạn thì dư 9 bạn nên x=395(nhận)
vậy: Số học sinh khối 6 là 395 bạn
Số cây bút tổng cộng là \(7\cdot12=84\left(cây\right)\)
Vì 84:6=14 dư 0
nên cô giáo có thể chia đều số bút trên cho 6 tổ
\(E=1+2+2^2+...+2^{2022}\)
=>\(2E=2+2^2+2^3+...+2^{2023}\)
=>\(2E-E=2+2^2+...+2^{2023}-1-2-...-2^{2022}\)
=>\(E=2^{2023}-1\)
\(2^{x+2}-2^x=96\)
=>\(2^x\cdot4-2^x=96\)
=>\(2^x\cdot3=96\)
=>\(2^x=\dfrac{96}{3}=32=2^5\)
=>x=5