Mn ơi giúp mk gấp với 7 h mình cần đáp án r :\ mình chỉ cần B,và C, thôi !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{45}\\\dfrac{y}{2}-\dfrac{x}{2}=28\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{45}\\\dfrac{y}{2}=\dfrac{x}{2}+28\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{x+56}=\dfrac{1}{45}\\y=x+56\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}45\left(x+56\right)+45x=x\left(x+56\right)\\y=x+56\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}90x+2520=x^2+56x\\y=x+56\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x^2-34x-2520=0\\y=x+56\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=70\\x=-36\end{matrix}\right.\\y=x+56\end{matrix}\right.\)
Khi x = 70 => y = 70 + 56 = 126
Khi x = -36 => y = (-36) + 56 = 20
Sửa đề: B là giao điểm có hoành độ dương của (P) và (d)
Phương trình hoành độ giao điểm của (P) và (d):
−x² = x − 2
x² + x − 2 = 0
x² − x + 2x − 2 = 0
(x² − x) + (2x − 2) = 0
x(x − 1) + 2(x− 1) = 0
(x − 1)(x + 2) = 0
x − 1 = 0 hoặc x + 2 = 0
*) x − 1 = 0
x = 1
y = −1² = −1
B(1; −1)
*) x + 2 = 0
x = −2
y = −(−2)² = −4
A(−2; −4)
* Phương trình đường thẳng OB:
Gọi (d'): y = ax + b là phương trình đường thẳng OB
Do (d') đi qua O nên b = 0
=> (d'): y = ax
Do (d') đi qua B(1; −1) nên:
a = −1
=> (d'): y = −x
Gọi (d''): y = a'x + b' là đường thẳng đi qua A(−2; −4)
Do (d'') // (d') nên a' = −1
=> (d''): y = −x + b
Do (d'') đi qua A(−2; −4) nên:
−(−2) + b = −4
b = −4 − 2
b = −6
=> (d''): y = −x − 6
Kẻ đường cao BD của tam giác ABC \(\left(D\in AC\right)\)
Khi đó \(AD=AB.cosA=c.cosA\)
\(BD=AB.sinA=c\sqrt{1-cos^2A}\)
\(CD=AC-AD=b-c.cosA\)
Tam giác BCD vuông tại D
\(\Rightarrow BC^2=CD^2+BD^2\)
\(\Leftrightarrow a^2=\left(b-c.cosA\right)^2+\left(c\sqrt{1-cos^2A}\right)^2\)
\(\Leftrightarrow a^2=b^2-2bc.cosA+c^2.cos^2A+c^2\left(1-cos^2A\right)\)
\(\Leftrightarrow a^2=b^2+c^2-2bc.cosA\)
Ta có đpcm.
5)
a) \(3x+8y=26\)
\(\Leftrightarrow y=\dfrac{26-3x}{8}\)
Vì \(y\inℤ\) nên \(\dfrac{26-3x}{8}\inℤ\)
\(\Rightarrow26-3x⋮8\)
\(\Leftrightarrow3x\equiv2\left(mod8\right)\)
Vì \(ƯCLN\left(3,8\right)=1\) nên đặt \(x=8q+r\left(0\le r< 8\right)\) thì:
\(3\left(8q+r\right)\equiv2\left(mod8\right)\)
\(\Leftrightarrow24q+3r\equiv2\left(mod8\right)\)
\(\Leftrightarrow3r\equiv2\left(mod8\right)\)
Thử từng trường hợp, ta thấy ngay \(r=6\).
Vậy \(x=8q+6\)
\(\Rightarrow y=\dfrac{26-3x}{8}=\dfrac{26-3\left(8q+6\right)}{8}=\dfrac{8-24q}{8}=1-3q\)
Vậy phương trình đã cho có nghiệm nguyên là \(\left(8q+6,1-3q\right)\) với \(q\inℤ\) bất kì.
b) Cho \(1-3q>0\Leftrightarrow q< \dfrac{1}{3}\)
Cho \(8q+6>0\Leftrightarrow q>-\dfrac{3}{4}\)
Do đó \(-\dfrac{3}{4}< q< \dfrac{1}{3}\). Mà \(q\inℤ\Rightarrow q=0\)
Thế vào \(x,y\), pt sẽ có nghiệm nguyên dương là \(\left(6;1\right)\)
Câu 6 làm tương tự nhé bạn.
Các phương trình bậc nhất 2 ẩn là: `3x-y=3;x+2y=8;y+3y=11`
Hệ số a,b,c của các pt là:
+) `3x-y=3` có `a=3; b=-1;c=3`
+) `x+2y=8` có `a=1;b=2;c=8`
+) `y+3x=11` có `a=3;b=1;c=11`
8)
a) Tam giác ABI và ACK có:
\(\widehat{AIB}=\widehat{AKC}=90^o;\widehat{BAC}\) chung
\(\Rightarrow\Delta ABI\sim\Delta ACK\left(g.g\right)\)
\(\Rightarrow\dfrac{AB}{AC}=\dfrac{AI}{AK}\)
\(\Rightarrow\dfrac{AK}{AC}=\dfrac{AI}{AB}\)
Tam giác AIK và ABC có:
\(\dfrac{AK}{AC}=\dfrac{AI}{AB};\widehat{BAC}\) chung
\(\Rightarrow\Delta AIK\sim\Delta ABC\left(c.g.c\right)\)
\(\Rightarrow\dfrac{S_{AIK}}{S_{ABC}}=\left(\dfrac{AI}{AB}\right)^2=cos^2A\)
\(\Rightarrow S_{AIK}=S_{ABC}.cos^2A\)
b) Có \(S_{BCIK}=S_{ABC}-S_{AIK}\)
\(=S_{ABC}-S_{ABC}.cos^2A\)
\(=S_{ABC}\left(1-cos^2A\right)\)
\(=S_{ABC}.sin^2A\)
c) \(S_{HIK}=S_{ABC}-S_{AKI}-S_{BHK}-S_{CHI}\)
\(=S_{ABC}-S_{ABC}.cos^2A-S_{ABC}.cos^2B-S_{ABC}.cos^2C\)
\(=S_{ABC}\left(1-cos^2A-cos^2B-cos^2C\right)\)
d) Có \(cotB=\dfrac{BH}{AH};cotC=\dfrac{CH}{AH}\)
\(\Rightarrow cotB+cotC=\dfrac{BH}{AH}+\dfrac{CH}{AH}=\dfrac{BC}{AH}\)
Nếu \(cotB+cotC\ge\dfrac{2}{3}\) thì \(\dfrac{BC}{AH}\ge\dfrac{2}{3}\Leftrightarrow BC\ge\dfrac{2}{3}AH\)
Nhưng điều này chưa chắc đã đúng tùy vào cách vẽ hình nên bạn cần bổ sung thêm điều kiện gì đó vào câu này nhé.
Kẻ đường cao BD của tam giác ABC \(\left(D\in AC\right)\)
Khi đó \(AD=AB.cosA=c.cosA\)
\(\Rightarrow CD=AC-AD=b-c.cosA\)
Mặt khác, \(BD=BA.sinA=c\sqrt{1-cos^2A}\)
Tam giác BCD vuông tại D nên:
\(a^2=BC^2=DB^2+DC^2\)
\(=\left(b-c.cosA\right)^2+\left(c\sqrt{1-cos^2A}\right)^2\)
\(=b^2-2bc.cosA+c^2.cos^2A+c^2\left(1-cos^2A\right)\)
\(=b^2+c^2-2bc.cosA\)
Vậy đẳng thức được chứng minh.
Olm chào em, em nên viết bằng công thức toán học nơi có biểu tượng \(\Sigma\) góc trái màn hình em nhé.
\(a)\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}\\ =\dfrac{\sqrt{4+2\sqrt{3}}}{\sqrt{2}}-\dfrac{\sqrt{4-2\sqrt{3}}}{\sqrt{2}}\\ =\dfrac{\sqrt{1^2+2\cdot1\cdot\sqrt{3}+\left(\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{3}\right)^2-2\cdot\sqrt{3}\cdot1+1^2}}{\sqrt{2}}\\ =\dfrac{\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}}{\sqrt{2}}\\ =\dfrac{\sqrt{3}+1-\sqrt{3}+1}{\sqrt{2}}\\ =\dfrac{2}{\sqrt{2}}\\ =\sqrt{2}\)
b)
\(\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}-\sqrt{2}\\ =\dfrac{\sqrt{6+2\sqrt{5}}}{\sqrt{2}}-\dfrac{\sqrt{6-2\sqrt{5}}}{\sqrt{2}}-\sqrt{2}\\ =\dfrac{\sqrt{\left(\sqrt{5}\right)^2+2\cdot\sqrt{5}\cdot1+1^2}}{\sqrt{2}}-\dfrac{\sqrt{\left(\sqrt{5}\right)^2-2\cdot\sqrt{5}\cdot1+1^2}}{\sqrt{2}}-\sqrt{2}\\ =\dfrac{\sqrt{\left(\sqrt{5}+1\right)^2}}{\sqrt{2}}-\dfrac{\sqrt{\left(\sqrt{5}-1\right)^2}}{\sqrt{2}}-\sqrt{2}\\ =\dfrac{\sqrt{5}+1-\sqrt{5}+1-2}{\sqrt{2}}\\ =\dfrac{0}{\sqrt{2}}\\ =0\)