K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
10 tháng 1

Lời giải:
Theo định lý Bê-du về phép chia đa thức, số dư của  $P(x)$ khi chia $2x-5$ là $P(\frac{5}{2})=\frac{5}{4}(\frac{5}{2})^3+\frac{5}{6}(\frac{5}{2})^2-\frac{21}{4}.\frac{5}{2}+\frac{1}{6}=\frac{377}{32}$

9 tháng 1

M A B O C H D

a/

Xét tg vuông AMO có

\(\sin\widehat{AMO}=\dfrac{OA}{OM}=\dfrac{R}{2R}=\dfrac{1}{2}\Rightarrow\widehat{AMO}=30^o\)

Xét tg vuông AMO và tg vuông BMO có

MO chung; OA=OB=R => tg AMO = tg BMO (Hai tg vuông có cạnh huyền và 1 cạnh góc vuông bằng nhau)

\(\Rightarrow\widehat{AMO}=\widehat{BMO}=30^o\Rightarrow\widehat{AMO}+\widehat{BMO}=\widehat{AMB}=30^o+30^o=60^o\)

Xét tg MAB có

tg AMO = tg BMO (cmt) => MA=MB => tg MAB cân tại M

\(\Rightarrow\widehat{MAB}=\widehat{MBA}\)

Ta có

\(\widehat{MBA}+\widehat{MAB}=180^o-\widehat{AMB}=180^0-60^o=120^o\)

\(\Rightarrow2\widehat{MAB}=120^o\Rightarrow\widehat{MAB}=\widehat{MBA}=120^o:2=60^o\)

\(\Rightarrow\widehat{AMB}=\widehat{MAB}=\widehat{MBA}=60^o\) => tg MAB là tg đều

b/ Gọi H là giao của MO với AB

\(\Rightarrow AB\perp MO;HA=HB\) (2 tiếp tuyến cùng xp từ 1 điểm ngoài hình tròn thì đường nối điểm đó với tâm vuông góc và chia đôi đoạn thẳng nối 2 tiếp điểm)

Ta có

\(S_{AOC}=\dfrac{1}{2}.HA.OC;S_{BOC}=\dfrac{1}{2}.HB.OC\) mà HA=HB (cmt)

\(\Rightarrow S_{AOC}=S_{BOC}\)

\(S_{AOBC}=S_{AOC}+S_{BOC}=2.S_{AOC}=HA.OC\) 

Xét tg vuông AMO có

\(AO^2=OH.MO\) (Trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)

\(\Rightarrow OH=\dfrac{AO^2}{MO}=\dfrac{R^2}{2R}=\dfrac{R}{2}\)

Ta có

\(MH=MO-OH=2R-\dfrac{R}{2}=\dfrac{3R}{2}\)

Ta có

\(HA^2=MH.OH\) (trong tg vuông bình phương đường cao hạ từ đỉnh góc vuông xuống cạnh huyền bằng tích giữa 2 hình chiếu của 2 cạnh góc vuông trên cạnh huyền)

\(\Rightarrow HA=\sqrt{MH.OH}=\sqrt{\dfrac{3R}{2}.\dfrac{R}{2}}=\dfrac{R\sqrt{3}}{2}\)

\(\Rightarrow S_{AOBC}=HA.OC=\dfrac{R\sqrt{3}}{2}.R=\dfrac{R^2\sqrt{3}}{2}\)

c/

Ta có

\(MA\perp OA;OD\perp OA\) => MA//OD

 \(\Rightarrow\widehat{MOD}=\widehat{AMO}=30^o\) (góc so le trong)

Xét tg vuông BMO có

\(\widehat{MOB}=90^o-\widehat{OMB}=90^o-30^o=60^o\)

\(\Rightarrow\widehat{BOD}=\widehat{MOB}-\widehat{MOD}=60^o-30^o=30^o\)

\(\Rightarrow\widehat{MOD}=\widehat{BOD}=30^o\)

Xét tg BOD và tg COD có

\(OB=OC=R\)

OD chung

\(\widehat{BOD}=\widehat{MOD}\) (cmt)

=> tg BOD = tg COD (c.g.c)\(\Rightarrow\widehat{OCD}=\widehat{OBD}=90^o\Rightarrow CD\perp OC\)

=> CD là tiếp tuyến với (O)

 

 

NV
8 tháng 1

\(\Leftrightarrow36x-20=4y^2-4y\)

\(\Leftrightarrow18\left(2x-1\right)=\left(2y-1\right)^2+1\)

Vế trái chia hết cho 3, vế phải chia 3 luôn dư 1 hoặc 2

Vậy không tồn tại cặp số nguyên x, y thỏa mãn

 

8 tháng 1

 Vì  \(9x-5\equiv4\left[9\right]\) nên \(y\left(y-1\right)=y^2-y\equiv4\left[9\right]\) hay \(y^2-y-4⋮9\) 

\(\Leftrightarrow y^2-5y+4y-20+16⋮9\)

\(\Leftrightarrow\left(y-5\right)\left(y+4\right)+16⋮9\)

\(\Leftrightarrow\left(y-5\right)\left(y+4\right)-2⋮9\)

\(\Leftrightarrow\left(y-5\right)\left(y-5+9\right)-2⋮9\)

\(\Leftrightarrow\left(y-5\right)^2+9\left(y-5\right)-2⋮9\)

\(\Leftrightarrow\left(y-5\right)^2-2⋮9\)

\(\Rightarrow\left(y-5\right)^2-2⋮3\) hay \(\left(y-5\right)^2\equiv2\left(mod3\right)\)

 Điều này là vô lí vì số chính phương khi chia cho 3 không thể có số dư là 2. 

 Vậy pt đã cho không có nghiệm nguyên.

 

 

 

 

8 tháng 1

\(5^{2009}=5^{2000}\cdot5^9\)
Ta có: \(5^{2000}\equiv1\) (\(mod\) \(10000\))
          \(5^9\equiv3125\) (\(mod\) \(10000\))
\(\Rightarrow5^{2000}\cdot5^9\equiv1\cdot3125\) (\(mod\) \(10000\))
\(\Rightarrow5^{2009}\equiv3125\) (\(mod\) \(10000\))
Vậy \(4\) chữ số tận cùng của \(5^{2009}\) là \(3125\) 

7 tháng 1

Bạn xem lại đề, \(5^2009\) hay \(5^{2009}\)?

NV
7 tháng 1

Đặt \(\left\{{}\begin{matrix}\sqrt[3]{x}=a\\\sqrt[3]{y}=b\end{matrix}\right.\) hệ trở thành \(\left\{{}\begin{matrix}2\left(a^3+b^3\right)=3\left(a^2b+ab^2\right)\\a+b=6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2\left[\left(a+b\right)^3-3ab\left(a+b\right)\right]=3ab\left(a+b\right)\\a+b=6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2\left(6^3-18ab\right)=18ab\\a+b=6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}ab=8\\a+b=6\end{matrix}\right.\)

\(\Rightarrow\) a và b là nghiệm của \(t^2-6t+8=0\Rightarrow\left[{}\begin{matrix}t=4\\t=2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}a=4;b=2\\a=2;b=4\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=64;y=8\\x=8;y=64\end{matrix}\right.\)

7 tháng 1

\(x^2-10x^2+9=0\)

\(\Leftrightarrow-9x^2=-9\)

\(\Leftrightarrow x^2=1\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

Vậy phương trình có tập nghiệm là \(S=\left\{1;-1\right\}\).

NV
6 tháng 1

- Số lớn nhất \(\Rightarrow x=y=9\), khi đó nó có dạng: \(\overline{19293z}\) chia hết cho 7

\(\Rightarrow\overline{93z}-192\) chia hết cho 7

\(\Rightarrow930+z-192=738+z⋮7\)

\(\Rightarrow z+3⋮7\)

Mà z lớn nhất \(\Rightarrow z=4\)

Vậy số lớn nhất là \(192934\)

- Số nhỏ nhất \(\Rightarrow x=y=0\), khi đó có dạng \(\overline{10203z}\) chia hết cho 7

\(\Rightarrow102-\overline{3z}⋮7\Rightarrow102-\left(30+z\right)⋮7\)

\(\Rightarrow z-2⋮7\), mà z nhỏ nhất \(\Rightarrow z=2\)

Vậy số nhỏ nhất là \(102032\)