Cho f(x) = \(\hept{\begin{cases}\frac{x^2-3x+2}{x-1}vớix>1\\-3m^4+2m^2vớix< =1\end{cases}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình nghĩ bạn bị sai đề:
Bạn thử sửa đề lại thành:
lim (x--> 2) \(\frac{\sqrt{2x+5}-\sqrt{7+x}}{x^2-2x}\)
\(_{x\underrightarrow{lim}2}\frac{\sqrt{2x+5}-\sqrt{7-x}}{x^2-2x}\)
\(=x\underrightarrow{lim}2\frac{\left(\sqrt{2x+5}-\sqrt{7+x}\right)\left(\sqrt{2x+5}+\sqrt{7+x}\right)}{\left(x^2-2x\right)\left(\sqrt{2x+5}+\sqrt{7+x}\right)}\)
\(=x\underrightarrow{lim}2\frac{1}{x\left(\sqrt{2x+5}+\sqrt{7+x}\right)}=\frac{1}{12}\)
a)lim \(\frac{\sqrt{n^2-4n}-\sqrt{4n+1}}{\sqrt{3n^2+1}+n}\)
=lim \(\frac{\sqrt{1-\frac{4}{n}}-\sqrt{\frac{4}{n}+\frac{1}{n^2}}}{\sqrt{3+\frac{1}{n^2}}+1}=\frac{1}{\sqrt{3}+1}\)
b)lim \(\frac{\sqrt[3]{8n^3+n^2}-n}{2n-3}\)
= lim \(\frac{\sqrt[3]{8+\frac{1}{n^3}}-1}{2-\frac{3}{n}}=\frac{2-1}{2}=\frac{1}{2}\)
lim\(\left(\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{n\left(n+1\right)}\right)\)
= lim \(\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{n}-\frac{1}{n+1}\right)\)
= lim \(\left(\frac{1}{3}-\frac{1}{n+1}\right)\)
= 1/3
\(\text{GIẢI :}\)
\(lim\left(\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{\text{n}\left(\text{n}+1\right)}\right)\)
\(=lim\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{\text{n}}-\frac{1}{\text{n}+1}\right)\)
\(=lim\left(\frac{1}{3}-\frac{1}{\text{n}\left(\text{n + 1}\right)}\right)\)
\(=\frac{1}{3}\)
Đề bài yêu cầu gì thế bạn. Tìm m để hàm số liên tục ???