Tìm x, y biết x/y = 3/-2 và x-y=2y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Thể tích hộp đựng bánh:
3 × 1,5 × 2 = 9 (dm³)
b) Diện tích xung quanh hộp đựng bánh:
(3 + 1,5) × 2 × 2 = 18 (dm²)
Diện tích đáy:
3 × 1,5 = 4,5 (dm²)
Diện tích giấy cần dùng:
18 + 2 × 4,5 = 27 (dm²)
a: Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó ΔBAD=ΔBED
b: Xét ΔBKC có
KE,CA là các đường cao
KE cắt CA tại D
Do đó: D là trực tâm của ΔBKC
=>BD\(\perp\)KC
a: Xét ΔBAD vuông tại A và ΔBMD vuông tại M có
BD chung
\(\widehat{ABD}=\widehat{MBD}\)
Do đó: ΔBAD=ΔBMD
=>BA=BM
Xét ΔBAM có BA=BM và \(\widehat{ABM}=60^0\)
nên ΔBAM đều
b: ta có: ΔBAM đều
=>\(\widehat{BAM}=\widehat{BMA}=60^0\); MA=MB=AB
\(\widehat{MAB}+\widehat{MAC}=\widehat{BAC}\)
=>\(\widehat{MAC}+60^0=90^0\)
=>\(\widehat{MAC}=30^0\)
ΔBAC vuông tại A
=>\(\widehat{ABC}+\widehat{ACB}=90^0\)
=>\(\widehat{ACB}+60^0=90^0\)
=>\(\widehat{ACB}=30^0\)
Xét ΔMAC có \(\widehat{MAC}=\widehat{MCA}\left(=30^0\right)\)
nên ΔMAC cân tại M
=>\(\widehat{AMC}=180^0-2\cdot\widehat{ACM}=120^0\)
a Xét ΔAMC và ΔABN có
AM=AB
\(\widehat{MAC}\) chung
AC=AN
Do đó: ΔAMC=ΔABN
b: Gọi K là giao điểm của CM với BN
Ta có: ΔAMC=ΔABN
=>\(\widehat{AMC}=\widehat{ABN}\)
Xét tứ giác AMBK có \(\widehat{AMH}=\widehat{ABH}\)
nên AMBK là tứ giác nội tiếp
=>\(\widehat{BAM}=\widehat{BKM}=90^0\)
=>BN\(\perp\)CM tại K
Lời giải:
$\frac{2x+1}{-27}=\frac{-3}{2x+1}$
$\Rightarrow (2x+1)^2=(-27)(-3)$
$\Rightarrow (2x+1)^2=81=9^2=(-9)^2$
$\Rightarrow 2x+1=9$ hoặc $2x+1=-9$
$\Rightarrow x=4$ hoặc $x=-5$
Do P(x) chia hết cho x - 1 nên nghiệm của đa thức x - 1 cũng là nghiệm của P(x)
Cho x - 1 = 0
x = 0 + 1
x = 1
⇒ P(1) = a.1² + b.1 + c
= a + b + c
= 0
Vậy S = 0
a: Kẻ DM//AC(M\(\in\)AC)
Ta có: DM//AC
=>\(\widehat{BMD}=\widehat{BCA}\)(hai góc đồng vị)
=>\(\widehat{DBM}=\widehat{DMB}\)
=>DB=DM
=>DM=CE
Xét ΔDIM và ΔEIC có
\(\widehat{DMI}=\widehat{ECI}\)(DM//CE)
DM=CE
\(\widehat{MDI}=\widehat{CEI}\)(DM//CE)
Do đó: ΔDIM=ΔEIC
=>ID=IE
=>I là trung điểm của DE
b: ΔABC cân tại A
mà AH là đường cao
nên AH là phân giác của góc BAC
Xét ΔABO và ΔACO có
AB=AC
\(\widehat{BAO}=\widehat{CAO}\)
AO chung
Do đó: ΔABO=ΔACO
=>\(\widehat{ABO}=\widehat{ACO}=90^0\)
=>OC\(\perp\)AE tại C
Ta có: ΔABO=ΔACO
=>OB=OC
Xét ΔOBD vuông tại B và ΔOCE vuông tại C có
OB=OC
BD=CE
Do đó: ΔOBD=ΔOCE
=>OD=OE
=>ΔODE cân tại O
Ta có: ΔODE cân tại O
mà OI là đường trung tuyến
nên OI\(\perp\)DE
Olm chào em, hôm nay Olm.vn sẽ hướng dẫn các em giải chi tiết dạng này bằng phương pháp thế như sau:
Giải:
\(\dfrac{x}{y}\) = \(\dfrac{3}{-2}\) và \(x-y\) = 2y
\(x\) - y = 2y ⇒ \(x\) = 2y + y ⇒ \(x\) = 3y
Thay \(x=3y\) vào biểu thức \(\dfrac{x}{y}\) = \(\dfrac{3}{-2}\) ta có: \(\dfrac{3y}{y}\) = \(\dfrac{3}{-2}\)
⇒ 3 = \(\dfrac{3}{-2}\) (vô lí)
Vậy không có giá trị nào của \(x;y\) thỏa mãn đề bài.