Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(7\cdot4^{x-1}+4^{x+1}=23\)
=>\(7\cdot4^x\cdot\dfrac{1}{4}+4^x\cdot4=23\)
=>\(4^x\left(\dfrac{7}{4}+4\right)=23\)
=>\(4^x=23:\dfrac{23}{4}=4\)
=>x=1
a: \(\widehat{MON}+\widehat{O_1}+45^0=180^0\)
=>\(\widehat{O_1}=180^0-90^0-45^0=45^0\)
Ta có: \(\widehat{O_1}=\widehat{MNO}\left(=45^0\right)\)
mà hai góc này là hai góc ở vị trí so le trong
nên OB//AM
b: Ta có: OB//AM
MA\(\perp\)AB
Do đó: OB\(\perp\)BA
\(119\times24-53\times23-24\times66\)
\(=\left(119-66\right)\times24-53\times23\)
\(=53\times24-53\times23\)
\(=53\times\left(24-23\right)\)
\(=53\times1\)
\(=53\)
\(119\cdot24-53\cdot23-24\cdot66\)
\(=24\left(119-66\right)-53\cdot23\)
\(=53\cdot24-53\cdot23=53\)
\(n^2+n-7=\left(n^2-2n\right)+\left(3n-6\right)-1\\ =n\left(n-2\right)+3\left(n-2\right)-1\\ =\left(n-2\right)\left(n+3\right)-1\)
Để: \(\left(n^2+n-7\right)⋮\left(n-2\right)\Rightarrow\left[\left(n-2\right)\left(n+3\right)-1\right]⋮\left(n-2\right)\\ \Rightarrow1⋮\left(n-2\right)\) (Vì: \(\left(n-2\right)\left(n+3\right)⋮\left(n-2\right)\forall n\inℤ\) )
\(\Rightarrow n-2\in\left\{1;-1\right\}\Rightarrow n\in\left\{3;1\right\}\)
Ta có:
\(n^2+n-7\\ =\left(n^2-2n\right)+\left(3n-6\right)-1\\ =n\left(n-2\right)+3\left(n-2\right)-1\\ =\left(n-2\right)\left(n+3\right)-1\)
Để `n^2+n-7` chia hết cho n - 2 thì:
1 ⋮ n - 2
=> n - 2 ∈ Ư(1) = {1; -1}
=> n ∈ {3; 1}
\(3^{x+2}-5.3^x\\ =3^x\left(3^2-5\right)\\ =3^x.\left(9-5\right)\\ =4.3^x\)
\(A=\dfrac{1}{299}\left(1-\dfrac{1}{300}+\dfrac{1}{2}-\dfrac{1}{301}+\dfrac{1}{3}-\dfrac{1}{302}+...+\dfrac{1}{101}-\dfrac{1}{400}\right)\)
\(299A=1+\dfrac{1}{2}+...+\dfrac{1}{101}-\left(\dfrac{1}{300}+\dfrac{1}{301}+...+\dfrac{1}{400}\right)\)
Thêm bớt \(\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{299}\) ta được:
\(299A=1+\dfrac{1}{2}+...+\dfrac{1}{101}+\left(\dfrac{1}{102}+...+\dfrac{1}{299}\right)-\left(\dfrac{1}{102}+...+\dfrac{1}{299}\right)-\left(\dfrac{1}{300}+...+\dfrac{1}{400}\right)\)
\(299A=\left(1+\dfrac{1}{2}+...+\dfrac{1}{299}\right)-\left(\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{400}\right)\)
\(101B=1-\dfrac{1}{102}+\dfrac{1}{2}-\dfrac{1}{103}+\dfrac{1}{3}-\dfrac{1}{104}+....+\dfrac{1}{299}-\dfrac{1}{400}\)
\(101B=\left(1+\dfrac{1}{2}+...+\dfrac{1}{299}\right)-\left(\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{400}\right)\)
\(\Rightarrow299A=101B\)
\(\Rightarrow\dfrac{A}{B}=\dfrac{101}{299}\)