K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 11 2023

 Gọi 2 số nguyên tố đó là p, q và giả sử \(p>q\). Khi đó ta có \(p+q,p-q\) đều là các số nguyên tố.

 Nếu \(p-q=2\) \(\Rightarrow p+q=2\) (vì \(\left(p-q\right)+\left(p+q\right)=2p⋮2\)), vô lí

 Tương tự với TH \(p+q=2\) cũng sẽ dẫn tới điều vô lí.

 Do đó \(p+q,p-q\) lẻ, mà p và q đều các số nguyên tố \(\Rightarrow q=2\)

 Vậy, ta cần tìm p để \(p\pm2\) là các số nguyên tố \(\Rightarrow p\ge5\)

 Xét \(p=5\) thì \(p+2=7;p-2=3\) thỏa mãn.

 Xét \(p>5\) thì p có dạng \(p=6k+1,p=6k+5\left(k\ge1\right)\), khi đó dễ thấy rằng \(p+2,p-2\) là hợp số, vô lí.

 Vậy \(p=5,q=2\) là cặp số nguyên tố duy nhất thỏa mãn đề bài.

 

16 tháng 11 2023

5 + 2 = 7

5 - 2 = 3

Hai số đó là 2 và 5

16 tháng 11 2023

 

1963+1964+1965+1966+1967+.......+2021+2022+2023
Gọi A = 1963+1964+1965+1966+1967+.......+2021+2022+2023

 Số số hạng của S là: 

 \(\dfrac{2023-1963}{1}+1=71\left(\text{Số số hạng}\right)\) 

Tổng của A là:

\(\dfrac{\left(2023+1963\right).71}{2}=141503\)

Vậy tổng của 1963+1964+1965+1966+1967+...+2021+2022+2023+2024 = 141503

16 tháng 11 2023

toán lớp 1 haha

17 tháng 11 2023

a/ bạn tự làm

b/ \(\Rightarrow y=0\Rightarrow\dfrac{1}{2}x+2=0\) giải PT tìm hoành độ x

c/ \(\Rightarrow x=0\Rightarrow y=0+2=2\)

d/ \(\Rightarrow\dfrac{1}{2}x+2=-x+2\) Giải PT tìm hoành độ x của C rồi thay vào d1 hoặc d2 để tìm tung độ y của C

DT
16 tháng 11 2023

pt : \(x^2-\left(2m+1\right)x+m^2+m-1=0\)

\(\Delta=\left[-\left(2m+1\right)\right]^2-4.1.\left(m^2+m-1\right)\\ =4m^2+4m+1-4m^2-4m+4=5>0\)

=> pt luôn có 2 nghiệm phân biệt với mọi m

Theo hệ thức Vi ét :

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2m+1}{2}\\x_1.x_2=m^2+m-1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}2\left(x_1+x_2\right)=2m+1\\x_1.x_2=m^2+m-1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}4\left(x_1+x_2\right)^2=4m^2+4m+1\\4x_1x_2=4m^2+4m-4\end{matrix}\right.\)

\(\Rightarrow4\left(x_1+x_2\right)^2-4x_1x_2=5\) ( Không phụ thuộc vào m - DPCM )

19 tháng 11 2023

Hệ thức viet này có vẻ không đúng lắm

AH
Akai Haruma
Giáo viên
16 tháng 11 2023

Lời giải:

a. Bạn xem lại đề. $2y-3y$ hay $2x-3y$ hay $2y-3x$?

b. $2xy-y-x=1$

$\Leftrightarrow y(2x-1)-x=1$

$\Leftrightarrow 2y(2x-1)-2x=2$

$\Leftrightarrow 2y(2x-1)-(2x-1)=3$

$\Leftrightarrow (2x-1)(2y-1)=3$

Do $x,y$ là số nguyên nên $2x-1,2y-1$ cũng là số nguyên. Ta có các TH sau:

TH1: $2x-1=1, 2y-1=3\Rightarrow x=1; y=2$

TH2: $2x-1=3; 2y-1=1\Rightarrow x=2; y=1$

TH3: $2x-1=-1; 2y-1=-3\Rightarrow x=0; y=-1$

TH4: $2x-1=-3; 2y-1=-1\Rightarrow x=-1; y=0$

15 tháng 11 2023

 Ta nhận thấy tổng các hệ số của pt bậc 2 đã cho là \(1-a+a-1=0\) nên pt này có 1 nghiệm là 1, nghiệm kia là \(a-1\), nhưng do không được giải pt nên ta sẽ làm theo cách sau:

 Ta thấy pt này luôn có 2 nghiệm phân biệt. Theo hệ thức Viète:

 \(\left\{{}\begin{matrix}x_1+x_2=a\\x_1x_2=a-1\end{matrix}\right.\)

 Vậy, \(M=\dfrac{3\left(x_1^2+x_2^2\right)-3}{x_1x_2\left(x_1+x_2\right)}\)

\(M=\dfrac{3\left[\left(x_1+x_2\right)^2-2x_1x_2\right]-3}{a\left(a-1\right)}\)

\(M=\dfrac{3\left(a^2-2\left(a-1\right)\right)-3}{a\left(a-1\right)}\)

\(M=\dfrac{3\left[\left(a-1\right)^2-1\right]}{a\left(a-1\right)}\)

\(M=\dfrac{3a\left(a+2\right)}{a\left(a-1\right)}\)

\(M=\dfrac{3a+6}{a-1}\)

b) Ta có \(P=\left(x_1+x_2\right)^2-2x_1x_2=a^2-2\left(a-1\right)=\left(a-1\right)^2\ge0\)

Dấu "=" xảy ra \(\Leftrightarrow a=1\). Vậy để P đạt GTNN thì \(a=1\)

15 tháng 11 2023

Sai

AH
Akai Haruma
Giáo viên
18 tháng 11 2023

Lời giải:

Vì $MA,MB$ là tiếp tuyến của $O$ nên $MA\perp OA, MB\perp OB$

$\Rightarrow \widehat{MAO}=\widehat{MBO}=90^0$

Xét tứ giác $MAOB$ có $\widehat{MAO}+\widehat{MBO}=90^0+90^0=180^0$. Mà 2 góc này đối nhau nên $MAOB$ là tứ giác nội tiếp.

$\Rightarrow M, A,O,B$ cùng thuộc 1 đường tròn (1)

Mặt khác:

Tam giác $ONP$ cân tại $O$ (do $ON=OP=R$) nên trung tuyến $OK$ đồng thời là đường cao.

$\Rightarrow \widehat{MKO}=90^0$

Xét tứ giác $MAKO$ có $\widehat{MAO}=\widehat{MKO}=90^0$. Mà 2 góc này cùng nhìn cạnh $MO$ nên $MAKO$ là tứ giác nội tiếp.

$\Rightarrow M,A,K,O$ cùng thuộc 1 đường tròn (2)

Từ $(1); (2)\Rightarrow M, A, O, K,B$ cùng thuộc 1 đường tròn.

AH
Akai Haruma
Giáo viên
18 tháng 11 2023

Hình vẽ:

AH
Akai Haruma
Giáo viên
18 tháng 11 2023

Lời giải:

Vì $MA,MB$ là tiếp tuyến của $O$ nên $MA\perp OA, MB\perp OB$

$\Rightarrow \widehat{MAO}=\widehat{MBO}=90^0$

Xét tứ giác $MAOB$ có $\widehat{MAO}+\widehat{MBO}=90^0+90^0=180^0$. Mà 2 góc này đối nhau nên $MAOB$ là tứ giác nội tiếp.

$\Rightarrow M, A,O,B$ cùng thuộc 1 đường tròn (1)

Mặt khác:

Tam giác $ONP$ cân tại $O$ (do $ON=OP=R$) nên trung tuyến $OK$ đồng thời là đường cao.

$\Rightarrow \widehat{MKO}=90^0$

Xét tứ giác $MAKO$ có $\widehat{MAO}=\widehat{MKO}=90^0$. Mà 2 góc này cùng nhìn cạnh $MO$ nên $MAKO$ là tứ giác nội tiếp.

$\Rightarrow M,A,K,O$ cùng thuộc 1 đường tròn (2)

Từ $(1); (2)\Rightarrow M, A, O, K,B$ cùng thuộc 1 đường tròn.