Một của hàng đầu năm bán được 1320 chiếc điện thoại. Trong 3 tháng cuối năm, trung bình mỗi tháng của hàng bán được 160 chiếc. Hỏi trong cả năm, trung bình mỗi tháng cửa hàng đó bán được bao nhiêu chiếc điện thoại?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔABC có
BE,CF là các đường cao
BE cắt CF tại H
Do đó: H là trực tâm của ΔABC
=>AH\(\perp\)BC
\(6^x+6^{x+1}=2^{x+1}+2\cdot2^{x+2}+4\cdot2^x\)
=>\(6^x+6^x\cdot6=2^x\cdot2+4\cdot2^x+4\cdot2^x\)
=>\(6^x\cdot7=2^x\cdot10\)
=>\(3^x=\dfrac{10}{7}\)
=>\(x=log_3\left(\dfrac{10}{7}\right)\)
6\(x\) + 6\(x+1\) = 2\(x+1\) + 2.2\(x+2\) + 4.2\(^x\) (\(x\in\) N)
6\(^x\)(1 + 6) = 2\(^x\).(2 + 2.22 + 4)
6\(^x\).7 = 2\(^x\).(2+ 8 + 4)
6\(x\).7 = 2\(^x\).(10 + 4)
6\(^x\).7 = 2\(^x\).14
6\(^x\) = 2\(^x\).14 : 7
6\(^x\) = 2\(x\).2
6\(^x\) : 2\(^x\) = 2
3\(^x\) = 2 ⇒ 3\(^x\) ⋮ 2 (vô lý) Vậy pt vô nghiệm hay
\(x\in\) \(\varnothing\)
a: 25-(5-x)=-7
=>5-x=25+7=32
=>x=5-32=-27
b: \(\dfrac{1}{2}+\dfrac{2}{3}:\left(x-1\right)=\dfrac{3}{4}\)
=>\(\dfrac{2}{3}:\left(x-1\right)=\dfrac{3}{4}-\dfrac{1}{2}=\dfrac{1}{4}\)
=>\(x-1=\dfrac{2}{3}:\dfrac{1}{4}=\dfrac{2}{3}\cdot4=\dfrac{8}{3}\)
=>\(x=\dfrac{8}{3}+1=\dfrac{11}{3}\)
d: \(\left(2x+1\right)\left(x-\dfrac{1}{7}\right)=0\)
=>\(\left[{}\begin{matrix}2x+1=0\\x-\dfrac{1}{7}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=\dfrac{1}{7}\end{matrix}\right.\)
c: \(\dfrac{3}{7}+\dfrac{4}{7}x=\dfrac{1}{3}\)
=>\(\dfrac{4}{7}x=\dfrac{1}{3}-\dfrac{3}{7}=\dfrac{7}{21}-\dfrac{9}{21}=-\dfrac{2}{21}\)
=>\(x=-\dfrac{2}{21}:\dfrac{4}{7}=-\dfrac{2}{21}\cdot\dfrac{7}{4}=\dfrac{-1}{6}\)
\(B=\dfrac{\sqrt{x}-1}{3-\sqrt{x}}-\dfrac{9\sqrt{x}+5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}-\dfrac{\sqrt{x}}{\sqrt{x}+1}\)
\(=\dfrac{1-\sqrt{x}}{\sqrt{x}-3}-\dfrac{9\sqrt{x}+5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}-\dfrac{\sqrt{x}}{\sqrt{x}+1}\)
\(=\dfrac{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)-9\sqrt{x}-5-\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{1-x-9\sqrt{x}-5-x+3\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{-2x-6\sqrt{x}-4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}=\dfrac{-2\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{-2\left(\sqrt{x}+2\right)}{\sqrt{x}-3}\)
\(2022^0+\left[100-\left(3^2+1\right)^2\right]\)
\(=1+100-10^2\)
=1
\(\left|x-y+1\right|>=0\forall x,y\)
=>\(-2\left|x-y+1\right|< =0\forall x,y\)
\(\left|y-2\right|>=0\forall y\)
=>\(-3\left|y-2\right|< =0\forall y\)
Do đó: \(-2\left|x-y+1\right|-3\left|y-2\right|< =0\forall x,y\)
=>\(C=-2\left|x-y+1\right|-3\left|y-2\right|-4< =-4\forall x,y\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-y+1=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=y-1=2-1=1\end{matrix}\right.\)
Thay a=1/3;b=3/5 vào A, ta được:
\(A=3\cdot\dfrac{1}{3}-\dfrac{1}{3}\cdot\dfrac{3}{5}+\dfrac{1}{2}\cdot\dfrac{1}{3}\cdot\dfrac{3}{5}\)
\(=1-\dfrac{1}{5}+\dfrac{1}{10}=\dfrac{4}{5}+\dfrac{1}{10}=\dfrac{9}{10}\)
Xét (O) có
ΔBDC nội tiếp
BC là đường kính
Do đó: ΔBDC vuông tại D
=>CD\(\perp\)AB
Xét (O) có
ΔBEC nội tiếp
BC là đường kính
Do đó: ΔBEC vuông tại E
=>BE\(\perp\)AC
Xét ΔABC có
CD,BE là các đường cao
CD cắt BE tại H
Do đó: H là trực tâm của ΔABC
=>AH\(\perp\)BC
Số chiếc điện thoại bán được trong 3 tháng cuối năm là:
\(3\cdot160=480\left(chiếc\right)\)
Trung bình mỗi tháng cửa hàng bán được:
\(\dfrac{1320+480}{12}=\dfrac{1800}{12}=150\left(chiếc\right)\)