K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Cho hình nón xoay đĩnh S có đáy là hình tròn (O,R) . 1. giả sử góc phẳng ở đĩnh S là 60 độ. AB là đường kính cố định của đáy.   a. C, D là hai điểm thuộc đường tròn đáy và ở về cùng một phía với đường kính AB sao cho  ^ BAC = phi < 45 độ và ^BAD = 45 độ. Tính góc nhị diện hợp bởi (SAB) và (SCD) theo Phi . b . E,F là dây cung thay đổi của đường tròn đáy vuông góc với AB. Tìm quỹ tích tâm vòng tròn ngoại tiếp...
Đọc tiếp

Cho hình nón xoay đĩnh S có đáy là hình tròn (O,R) .

1. giả sử góc phẳng ở đĩnh S là 60 độ. AB là đường kính cố định của đáy.

  a. C, D là hai điểm thuộc đường tròn đáy và ở về cùng một phía với đường kính AB sao cho  ^ BAC = phi < 45 độ và ^BAD = 45 độ. Tính góc nhị diện hợp bởi (SAB) và (SCD) theo Phi .

b . E,F là dây cung thay đổi của đường tròn đáy vuông góc với AB.

Tìm quỹ tích tâm vòng tròn ngoại tiếp tam giác SEF

2. Trên đáy có A là điểm cố định còn D là điểm di động.

  a .   Biết góc AOD = alpha , nhị diện cạnh AD = Bêta và khoảng cách từ O đến  mp ( SAD) bằng a . Tính thể tích hình nón theo a, alpha, bêta.

b. Xác định D để tam giác SAD có diện tích lớn nhất.

c . Tìm quỷ tích hình chiếu vuông góc H của O lên mp (SAD) khi D thay đổi.

 

0

 loading...   .

0
I. Có 8 học sinh xếp 8 chỗ ngồi trên một bàn dài. Bạn Quân muốn ngồi cạnh bạn Lâm. Tính xác suất sao cho 2 bạn ấy ngồi cạnh nhau. II. Có 12 bóng đèn, trong đó có 8 bóng đèn tốt, lấy ngẫu nhiên 3 bóng đèn. Tính xác suất để lấy được ít nhất 1 bóng đèn tốt. A. \(\dfrac{42}{55}\)     B. \(\dfrac{54}{55}\)    C. \(\dfrac{1}{55}\)    D. \(\dfrac{8}{55}\) III. Trên mặt phẳng cho bốn điểm phân biệt ABCD, trong đó không có bất kì...
Đọc tiếp

I. Có 8 học sinh xếp 8 chỗ ngồi trên một bàn dài. Bạn Quân muốn ngồi cạnh bạn Lâm. Tính xác suất sao cho 2 bạn ấy ngồi cạnh nhau.

II. Có 12 bóng đèn, trong đó có 8 bóng đèn tốt, lấy ngẫu nhiên 3 bóng đèn. Tính xác suất để lấy được ít nhất 1 bóng đèn tốt.

A. \(\dfrac{42}{55}\)     B. \(\dfrac{54}{55}\)    C. \(\dfrac{1}{55}\)    D. \(\dfrac{8}{55}\)

III. Trên mặt phẳng cho bốn điểm phân biệt ABCD, trong đó không có bất kì ba điểm nào thẳng hàng. Từ các điểm đã cho, có thể lập được bao nhiêu hình tam giác?

A. 10 hình tam giác    B. 6 hình tam giác   

C. 12 hình tam giác    D. 4 hình tam giác

IV. Trong mặt phẳng tọa độ Oxy, cho điểm E(-3; 5) và véc-tơ \(\overrightarrow{v}\) = (1; -2). Phép tịnh tiến theo véc-tơ \(\overrightarrow{v}\) biến điểm E thành điểm nào?

V. Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Có bao nhiêu cạnh của hình chóp chéo nhau với canh AB?

A. 4    B. 1    C. 3    D. 2

Giải giúp mình nhé. Cảm ơn các bạn.

 

 
1
NV
22 tháng 12 2022

1.

Không gian mẫu: \(8!\)

Xếp Quân Lâm cạnh nhau: \(2!\) cách

Coi cặp Quân-Lâm như 1 bạn, hoán vị với 6 bạn còn lại: \(7!\) cách

\(\Rightarrow2!.7!\) cách xếp thỏa mãn

Xác suất: \(P=\dfrac{2!.7!}{8!}=\dfrac{1}{4}\)

2.

Không gian mẫu: \(C_{12}^3\)

Lấy 3 bóng sao cho ko có bóng tốt nào (cả 3 đều là bóng ko tốt): \(C_4^3\) cách

\(\Rightarrow C_{12}^3-C_4^3\) cách lấy 3 bóng sao cho có ít nhất 1 bóng tốt

Xác suất: \(P=\dfrac{C_{12}^3-C_4^3}{C_{12}^3}=...\)

3.

Số tam giác bằng với số cách chọn 3 điểm từ 4 điểm nên có: \(C_4^3=...\) tam giác

4.

\(T_{\overrightarrow{v}}\left(E\right)=F\left(x;y\right)\Rightarrow\left\{{}\begin{matrix}x=-3+1=-2\\y=5-2=3\end{matrix}\right.\) \(\Rightarrow\left(-2;3\right)\)

5.

Có 2 cạnh chéo nhau với AB là SC, SD

I. Giải các phương trình sau: 1. cos2x = \(\dfrac{\sqrt{2}}{2}\) 2. \(\sqrt{3}\) cos3x - sin3x = -1 II. Có 7 cái áo đẹp và 5 cái quần đẹp khác nhau. Hỏi có bao nhiêu cách chọn bộ quần áo để đi dự sinh nhật? III. Có 12 học sinh ưu tú, trong đó có An và Bình. Cần chọn ra 4 học sinh để đi dự đại hội học sinh ưu tú toàn quốc. Tính xác suất để An và Bình không cùng...
Đọc tiếp

I. Giải các phương trình sau:

1. cos2x = \(\dfrac{\sqrt{2}}{2}\)

2. \(\sqrt{3}\) cos3x - sin3x = -1

II. Có 7 cái áo đẹp và 5 cái quần đẹp khác nhau. Hỏi có bao nhiêu cách chọn bộ quần áo để đi dự sinh nhật?

III. Có 12 học sinh ưu tú, trong đó có An và Bình. Cần chọn ra 4 học sinh để đi dự đại hội học sinh ưu tú toàn quốc. Tính xác suất để An và Bình không cùng đi.

A. \(\dfrac{1}{11}\)

B. \(\dfrac{3}{7}\)

C. \(\dfrac{1}{6}\)

D. \(\dfrac{11}{10}\)

IV. Nghiệm của phương trình 2sin2x + cosx + 1 = 0 là:

A. x = \(\dfrac{\pi}{2}\) + k2π

B. x = π + k2π

C. x = \(\pm\) arccos\(\dfrac{3}{2}\) + k2π

D. x = kπ

V. Tập xác định của hàm số y = \(\dfrac{1-2sinx}{1-cosx}\) là:

A. D = R \ {π + k2π, k \(\in\) Z}

B. D = R

C. D = R \ {kπ, k \(\in\) Z}

D. D = D = R \ {k2π, k \(\in\) Z}

VI. Phương trình: sin3x = \(\dfrac{1}{2}\) có tập nghiệm trên đoạn [0; π] là:

A. \(\left\{\dfrac{7\pi}{18},\dfrac{5\pi}{18},\dfrac{13\pi}{18},\dfrac{17\pi}{18}\right\}\)

B. \(\left\{\dfrac{\pi}{18},\dfrac{5\pi}{18},\dfrac{13\pi}{18},\dfrac{17\pi}{18}\right\}\)

C. \(\left\{\dfrac{7\pi}{18},\dfrac{5\pi}{18},\dfrac{11\pi}{18},\dfrac{13\pi}{18}\right\}\)

D. \(\left\{\dfrac{\pi}{18},\dfrac{3\pi}{18},\dfrac{7\pi}{18},\dfrac{11\pi}{18}\right\}\)

giải giúp mình nhé

0