K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 giờ trước (13:10)

giúp tôi vs cần gấpp

 

6 giờ trước (13:18)

a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(AH=\dfrac{6\cdot8}{10}=4,8\left(cm\right)\)

Xét ΔABC vuông tại A có \(sinB=\dfrac{AC}{BC}=\dfrac{8}{10}=\dfrac{4}{5}\)

nên \(\widehat{B}\simeq53^0\)

b: Xét ΔABC vuông tại A có \(cosB=\dfrac{BA}{BC};cosC=\dfrac{AC}{BC}\)

\(AB\cdot cosB+AC\cdot cosC\)

\(=AB\cdot\dfrac{AB}{BC}+AC\cdot\dfrac{AC}{BC}\)

\(=\dfrac{AB^2+AC^2}{BC}=\dfrac{BC^2}{BC}=BC\)

10 tháng 11

                             Giải:

Cứ một giờ ca nô xuôi dòng được: 1 : 5 = \(\dfrac{1}{5}\) (quãng sông AB)

Cứ một giờ ca nô ngược dòng được: 1 : 7 = \(\dfrac{1}{7}\)(quãng sông AB)

   3 km ứng với phân số là: (\(\dfrac{1}{5}\) - \(\dfrac{1}{7}\)) : 2 = \(\dfrac{1}{35}\) (quãng sông AB)

Quãng sông AB dài là: 3 : \(\dfrac{1}{35}\) = 105 (km)

Đáp số: 105 km 

    

 

Gọi thời gian ô tô đi trên quãng đường AB là x(giờ)

(Điều kiện: x>0)

30p=0,5 giờ

Thời gian ô tô đi trên quãng đường BC là x+0,5(giờ)

Độ dài quãng đường AB là 50x(km)

Độ dài quãng đường BC là 45(x+0,5)(km)

Tổng độ dài là 165km nên ta có:

\(50x+45\left(x+0,5\right)=165\)

=>50x+45x+22,5=165

=>95x=165-22,5=142,5

=>x=1,5(nhận)

vậy: Thời gian ô tô đi trên quãng đường AB là 1,5 giờ

Thời gian ô tô đi trên quãng đường BC là 1,5+0,5=2 giờ

giải nhanh giúp mình

1 tháng 11

                     Giải:

a; \(\widehat{A}\) + \(\widehat{B}\) + \(\widehat{C}\) = 1800 (tổng ba góc trong một tam giác)

 ⇒ \(\widehat{C}\) = 1800 - \(\widehat{A}\) - \(\widehat{B}\) = 1800 - 900 - 600 = 300

Áp dụng công thức: cos\(\widehat{ABC}\) = \(\dfrac{AB}{BC}\) ⇒ AB = BC.cos\(\widehat{ABC}\)

⇒ AB = 6.cos 600 = 6. \(\dfrac{1}{2}\) = 3

Vậy AB = 3cm 

Áp dụng công thức: sin \(\widehat{ABC}\) = \(\dfrac{AC}{BC}\) ⇒ AC = BC.sin \(\widehat{ABC}\)

⇒ AC = 3.sin 600 = 6.\(\dfrac{\sqrt{3}}{2}\) = 3\(\sqrt{3}\) 

Diện tích tam giác ABC là: 3\(\sqrt{3}\) x 3 : 2 = \(\dfrac{9\sqrt{3}}{2}\) (cm2)

b; Độ dài đường cao AH là: \(\dfrac{9\sqrt{3}}{2}\) .2 : 6 = \(\dfrac{3\sqrt{3}}{2}\)  (cm)

Xét tam giác vuông HAC vuông tại H

Theo pytago ta có: AH2 + HC2 = AC2

⇒ HC2 = AC2 - AH2 = (3\(\sqrt{3}\))2 - (\(\dfrac{3\sqrt{3}}{2}\))2 = \(\dfrac{81}{4}\)

HC = \(\sqrt{\dfrac{81}{4}}\) = \(\dfrac{9}{2}\) (cm)

Kết luận: a; góc C là 300; Độ dài AB; AC; AH; HC lần lượt là:

3cm ; 3\(\sqrt{3}\)cm; \(\dfrac{3\sqrt{3}}{2}\)cm; \(\dfrac{9}{2}\)cm

 

   

 

  

 

 

 

 

1 tháng 7

Tam giác ABC vuông tại A ta có:

\(tanB=\dfrac{AC}{AB}=>\dfrac{5}{12}=\dfrac{AC}{6}=>AC=\dfrac{5\cdot6}{12}=\dfrac{5}{2}\left(cm\right)\)

Áp dụng định lý Py-ta-go cho tam giác ABC vuông tại A ta có:

\(AB^2+AC^2=BC^2\\ =>BC=\sqrt{AB^2+AC^2}\\ =>BC=\sqrt{6^2+\left(\dfrac{5}{2}\right)^2}=\dfrac{13}{2}\left(cm\right)\)

Để giải bài toán, ta cần sử dụng một số công thức và định lý trong hình học, đặc biệt là định lý Pythagore và định nghĩa của các hàm số lượng giác.

Cho tam giác ABC vuông tại A, với AB = 6 cm và tanα = 5/12. Góc B = α.

a) Tính độ dài cạnh AC

Vì tam giác vuông tại A, góc α là góc B, ta có:

tan⁡(α)=đoˆˊi diệnkeˆˋ\tan(\alpha) = \frac{\text{đối diện}}{\text{kề}}

Trong tam giác ABC vuông tại A:

tan⁡(α)=BCAC\tan(\alpha) = \frac{BC}{AC}

Theo đề bài, tan⁡(α)=512\tan(\alpha) = \frac{5}{12}.

Do đó, ta có:

BCAC=512\frac{BC}{AC} = \frac{5}{12}

Từ đó suy ra:

BC=512ACBC = \frac{5}{12} AC

b) Tính độ dài cạnh BC

Ta sử dụng định lý Pythagore cho tam giác ABC vuông tại A:

BC2=AB2+AC2BC^2 = AB^2 + AC^2

Đầu tiên, ta cần tính AC.

Biết rằng tan⁡(α)=512\tan(\alpha) = \frac{5}{12}, do đó ta có:

sin⁡(α)=BCBC2+AC2\sin(\alpha) = \frac{BC}{BC^2 + AC^2} sin⁡(α)=BCBC2+AC2\sin(\alpha) = \frac{BC}{BC^2 + AC^2}

Vì tan(α) = 5/12 nên ta đặt BC = 5k và AC = 12k. Vì thế:

BC=5kBC = 5k

AC=12kAC = 12k

Sử dụng định lý Pythagore:

BC2=AB2+AC2BC^2 = AB^2 + AC^2

(5k)2=AB2+(12k)2(5k)^2 = AB^2 + (12k)^2

25k2=62+144k225k^2 = 6^2 + 144k^2

25k2=36+144k225k^2 = 36 + 144k^2

Từ đó, ta có:

AC=12k5AC = \frac{12k}{5}

AC2=AB2+BC2AC^2 = AB^2 + BC^2

(12k)2=62+(5k)2(12k)^2 = 6^2 + (5k)^2

144k2=36+25k2144k^2 = 36 + 25k^2

144k2−25k2=36144k^2 - 25k^2 = 36

119k2=36119k^2 = 36

k2=36119k^2 = \frac{36}{119}

k=36119k = \sqrt{\frac{36}{119}}

k=6119k = \frac{6}{\sqrt{119}}

BC=5k=5×6119=30119BC = 5k = 5 \times \frac{6}{\sqrt{119}} = \frac{30}{\sqrt{119}}

AC=12k=12×6119=72119AC = 12k = 12 \times \frac{6}{\sqrt{119}} = \frac{72}{\sqrt{119}}

Chúng ta có thể tính toán lại bằng cách:

Suy ra: BC=512ACBC = \frac{5}{12} AC AC=12×65=14.4AC = \frac{12 \times 6}{5} = 14.4 BC=5×1.2=6BC = 5 \times 1.2 = 6

Suy ra:...

a: Vì OO'=13cm<5cm+12cm

nên (O) cắt (O') tại hai điểm phân biệt

b: Xét ΔOAO' có \(OA^2+O'A^2=OO'^2\left(5^2+12^2=13^2\right)\)

nên ΔOAO' vuông tại A

=>AO\(\perp\)AO' tại A

Xét (O) có

AO là bán kính

AO\(\perp\)AO' tại A

Do đó: AO' là tiếp tuyến của (O) tại A

Xét (O') có

O'A là bán kính

AO\(\perp\)AO'

Do đó: AO là tiếp tuyến của (O') tại A

a: Xét (O) có

ΔBAC nội tiếp

BC là đường kính

Do đó: ΔBAC vuông tại A

=>BA\(\perp\)AC tại A

Xét (O') có

ΔBAD nội tiếp

BD là đường kính

Do đó: ΔBAD vuông tại A

=>BA\(\perp\)AD tại A

Ta có: BA\(\perp\)AD
BA\(\perp\)AC
mà AC,AD có điểm chung là A

nên C,A,D thẳng hàng

b: Gọi H là giao điểm của AB và O'O

Ta có: OA=OB

=>O nằm trên đường trung trực của AB(1)

Ta có: O'A=O'B

=>O' nằm trên đường trung trực của AB(2)

Từ (1),(2) suy ra O'O là đường trung trực của AB

=>O'O\(\perp\)AB tại H và H là trung điểm của AB

Xét ΔOBO' có \(BO^2+BO'^2=O'O^2\left(3^2+4^2=5^2\right)\)

nên ΔOBO' vuông tại B

Xét ΔOBO' vuông tại B có BH là đường cao

nên \(BH\cdot O'O=BO\cdot BO'\)

=>\(BH=3\cdot\dfrac{4}{5}=2,4\left(cm\right)\)

H là trung điểm của AB

=>\(AB=2\cdot2,4=4,8\left(cm\right)\)

O là trung điểm của BC

=>BC=2*BO=2*4=8(cm)

O' là trung điểm của BD

=>BD=2*BO'=2*3=6(cm)

ΔBCD vuông tại B

=>\(S_{BCD}=\dfrac{1}{2}\cdot BC\cdot BD=\dfrac{1}{2}\cdot6\cdot8=24\left(cm^2\right)\)

a: \(\left(\sqrt{\dfrac{4}{3}}+\sqrt{3}\right)\cdot\sqrt{6}\)

\(=\sqrt{\dfrac{4}{3}\cdot6}+\sqrt{3\cdot6}\)

\(=\sqrt{8}+\sqrt{18}=2\sqrt{2}+3\sqrt{2}=5\sqrt{2}\)

b: \(\left(1-2\sqrt{5}\right)^2=\left(2\sqrt{5}-1\right)^2\)

\(=\left(2\sqrt{5}\right)^2-2\cdot2\sqrt{5}\cdot1+1\)

\(=21-4\sqrt{5}\)

c: \(2\sqrt{3}-\sqrt{27}=2\sqrt{3}-3\sqrt{3}=-\sqrt{3}\)

d: \(\sqrt{45}-\sqrt{20}+\sqrt{5}\)

\(=3\sqrt{5}-2\sqrt{5}+\sqrt{5}\)

\(=4\sqrt{5}-2\sqrt{5}=2\sqrt{5}\)