Gỉai phương trình :
\(\sqrt{2-x^2}+\sqrt{2-\frac{1}{x^2}}=4-\left(x+\frac{1}{x}\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3+y^3+z^3-3xyz=0\)
\(\Leftrightarrow\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\left(x+y\right)+z^3-3xyz-3xy\left(x+y\right)=0\)
\(\Leftrightarrow\left(x+y\right)^3+z^3-3xy\left(x+y+z\right)=0\)
\(\Leftrightarrow\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2\right)-3xy\left(x+y+z\right)=0\)
\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+y+z=0\\x^2+y^2+z^2-xy-yz-xz=0\end{cases}}\)
Mà \(x,y,z>0\Rightarrow x+y+z\ne0\)
\(\Rightarrow x^2+y^2+z^2-xy-xz-yz=0\)
\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2xz=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x-y=0\\y-z=0\\z-x=0\end{cases}\Leftrightarrow}x=y=z\)
Thay vào biểu thức A ta được :
\(A=\frac{2018x-2019x+2020x}{\sqrt[3]{x^3}}=\frac{2019x}{x}=2019\)
Vậy ...
\(ab\le\frac{a^2+b^2}{2}\le\frac{16}{2}=8\)
Ta có: \(N^2=\left(a\sqrt{9b\left(a+8b\right)}+b\sqrt{9a\left(b+8a\right)}\right)^2\)
\(\le\left(a^2+b^2\right)\left[9b\left(a+8b\right)+9a\left(b+8a\right)\right]\)
\(\le16\left(18ab+72\left(a^2+b^2\right)\right)\le16\left(18.8+72.16\right)\)
\(=20736\)
=> \(N\le144\)
Dấu "=" xảy ra <=> a = b = \(\sqrt{8}\)
Vậy max N = 144 tại a = b = \(\sqrt{8}\)