Câu 5. (3,5 điểm) Cho tam giác ABC (AB < AC) có ba góc nhọn nội tiếp trong đường tròn
tâm O, bán kính R. Gọi H là giao điểm của ba đường cao AD, BE, CF của tam giác ABC.
a) Chứng minh rằng 4 điểm A, E, H, F cùng thuộc một đường tròn
b) Vẽ đường kính AK của đường tròn (O). Chứng minh tam giác ABD và tam giác AKC
đồng dạng với nhau. Suy ra AB.AC = 2R.AD.
c) Chứng minh rằng OC vuông góc với DE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(6x^2+8xy+11y^2=2\left(x-y\right)^2+\left(2x+3y\right)^2\ge\left(2x+3y\right)^2\)
Tương tự: \(6y^2+8yz+11z^2\ge\left(2y+3z\right)^2\)
\(6z^2+8zx+11x^2\ge\left(2z+3x\right)^2\)
=> \(P\le\frac{x^2+3xy+y^2}{2x+3y}+\frac{y^2+3yz+z^2}{2y+3z}+\frac{z^2+3zx+x^2}{2z+3x}\)
=> \(4P\le\frac{4x^2+12xy+4y^2}{2x+3y}+\frac{4y^2+12yz+4z^2}{2y+3z}+\frac{4z^2+12zx+4x^2}{2z+3x}\)
\(=\frac{\left(2x+3y\right)^2-5y^2}{2x+3y}+\frac{\left(2y+3z\right)^2-5z^2}{2y+3z}+\frac{\left(2z+3x\right)^2-5x^2}{2z+3x}\)
\(=5\left(x+y+z\right)-5\left(\frac{y^2}{2x+3y}+\frac{z^2}{2y+3z}+\frac{x^2}{2z+3x}\right)\)
\(\le5\left(x+y+z\right)-5.\frac{\left(x+y+z\right)^2}{5\left(x+y+z\right)}=4\left(x+y+z\right)\)
Lại có: \(\left(x+y+z\right)^2\le3\left(x^2+y^2+z^2\right)=9\)với mọi x; y; z
=> \(4P\le4.\sqrt{9}=12\)
=> \(P\le3\)
Dấu "=" xảy ra <=> x = y = z = 1
Vậy max P = 3 đạt tại x = y = z = 1.
Ta có :
\(B=\frac{\sqrt{x}+1}{\sqrt{x}-1}=1+\frac{2}{\sqrt{x}-1}\)
\(\Rightarrow B\sqrt{x}=\sqrt{x}+\frac{2.\sqrt{x}}{\sqrt{x}-1}\)
\(\Rightarrow B\sqrt{x}=\left(\sqrt{x}-1+\frac{2}{\sqrt{x}-1}\right)+3\)
\(\Rightarrow B\sqrt{x}\ge2\sqrt{\left(\sqrt{x}-1\right).\frac{2}{\sqrt{x}-1}}+3\)
\(\Rightarrow B\sqrt{x}\ge2\sqrt{2}+3\)
em ko biết làm :">
\(\hept{\begin{cases}2\sqrt{x-2}+3\sqrt{y-3}=14\\\sqrt{x-2}+\sqrt{y-3}=5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2\sqrt{x-2}+3\sqrt{y-3}=14\\2\sqrt{x-2}+2\sqrt{y-3}=10\end{cases}}\)
\(\Leftrightarrow2\sqrt{x-2}+3\sqrt{y-3}-2\sqrt{x-2}-2\sqrt{y-3}=14-10\)
\(\Leftrightarrow\sqrt{y-3}=4\Leftrightarrow y-3=16\Leftrightarrow y=19\)
\(\Rightarrow\sqrt{x-2}+\sqrt{19-3}=5\)
\(\Leftrightarrow x-2=\left(5-4\right)^2\Leftrightarrow x-2=1\Leftrightarrow x=3\)
\(\hept{\begin{cases}3\left(x+1\right)-y=6-2y\\2x-y=7\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}3x+3-y=6-2y\\2x-y=7\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}3x+y=3\\2x-y=7\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}6x+2y=6\\6x-3y=21\end{cases}}\)
\(\Leftrightarrow6x+2y-6x+3y=6-21\)
\(\Leftrightarrow5y=-15\Leftrightarrow y=-3\)
\(\Rightarrow x=\frac{7-3}{2}=2\)
\(\hept{\begin{cases}\sqrt{2}x+\left(\sqrt{2}+1\right)y=3\\x+\sqrt{2}y=2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{2}x+\sqrt{2}y+y=3\\\sqrt{2}x+y=2\sqrt{2}\end{cases}}\)
\(\Leftrightarrow\sqrt{2}x+\sqrt{2y}+y-\sqrt{2}x-y=3-2\sqrt{2}\)
\(\Leftrightarrow\sqrt{2}y=3-2\sqrt{2}\)
\(\Rightarrow y=\frac{3-2\sqrt{2}}{\sqrt{2}}=\frac{3}{\sqrt{2}}-2\)( em ko biết rút gọn sao :vv)
\(\Rightarrow x+\sqrt{2}\left(\frac{3}{\sqrt{2}}-2\right)=2\)
\(\Leftrightarrow x+3-2\sqrt{2}=2\)
\(\Leftrightarrow x=2\sqrt{2}-1\)