K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
26 tháng 12 2023

Bạn nên gõ hẳn đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu rõ đề của bạn hơn.

26 tháng 12 2023

$x(x+y)+4x+4y$

$=x(x+y)+4(x+y)$

$=(x+y)(x+4)$

26 tháng 12 2023

Vì hàm số \(y=ax+b\) đi qua hai điểm \(A\left(1;-1\right)\) và \(B\left(2;-2\right)\) nên ta có hệ:

\(\left\{{}\begin{matrix}a+b=-1\\2a+b=-2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=-1\\b=0\end{matrix}\right.\)

Vậy hàm số đã cho có dạng \(y=-x\).

AH
Akai Haruma
Giáo viên
26 tháng 12 2023

Lời giải:

a. Để $(d)$ đi qua gốc tọa độ $O(0;0)$ thì:

$y_O=(m-1)x_O+2m-1$

$\Leftrightarrow 0=(m-1).0+2m-1\Leftrightarrow m=\frac{1}{2}$

b.

$(d)$ cắt trục tung tại điểm có tung độ $3$, tức là $(d)$ đi qua $(0;3)$

Điều này xảy ra khi $3=(m-1).0+2m-1\Leftrightarrow 2m-1=3$

$\Leftrightarrow m=2$

c. 

$(d)$ cắt trục hoành tại điểm có hoành độ $-1$, tức là $(d)$ đi qua $(-1;0)$

Điều này xảy ra khi $0=(m-1)(-1)+2m-1$

$\Leftrightarrow 0=2m-1-(m-1)=m$

$\Leftrightarrow m=0$

 

26 tháng 12 2023

a) Thay tọa độ điểm M(0; 5) vào đường thẳng, ta có:

\(m.0+5=5\)

Vậy đường thẳng đã cho luôn đi qua điểm M(0; 5) với mọi giá trị của m

b) Thay tọa độ điểm P(2; 2021) vào đường thẳng, ta có:

\(\left(2m-1\right).2-4m+2023=4m-2-4m+2023=2021\)

Vậy đường thẳng đã cho luôn đi qua P(2; 2021) với mọi giá trị của m

26 tháng 12 2023

a) Thay tọa độ điểm A(-1; 3) vào hàm số, ta có:

\(\left(m-1\right).\left(-1\right)+2=3\)

\(\Leftrightarrow-m+1+2=3\)

\(\Leftrightarrow-m=3-1-2\)

\(\Leftrightarrow m=0\)

\(\Rightarrow y=-x+2\)

b) 

\(x\)\(0\)\(2\)
\(y=-x+2\)\(2\)\(0\)

Đồ thị:

AH
Akai Haruma
Giáo viên
26 tháng 12 2023

Tọa độ điểm M bị lỗi rồi. Bạn xem lại.