K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 3 2022

Tìm hiệu của số tròn chục lớn nhất có 2 chữ số 

18 tháng 7 2022

Vậy P không phụ thuộc vào x.

27 tháng 3 2022

quá đúng

29 tháng 3 2022

1234567890-01234567890-=qưertyuiop[]\';;lkjhfgdsazxcvbnm,./\'l;[]7894561230.+-

18 tháng 7 2022

Vì A+B+C=180^{\circ}A+B+C=180∘ nên V T=\dfrac{\sin ^{3} \dfrac{B}{2}}{\cos \left(\dfrac{180^{\circ}-B}{2}\right)}+\dfrac{\cos ^{3} \dfrac{B}{2}}{\sin \left(\dfrac{180^{\circ}-B}{2}\right)}-\dfrac{\cos \left(180^{\circ}-B\right)}{\sin B} \cdot \tan BVT=cos(2180∘−B​)sin32B​​+sin(2180∘−B​)cos32B​​−sinBcos(180∘−B)​⋅tanB.

V T=\dfrac{\sin ^{3} \dfrac{B}{2}}{\cos \left(\dfrac{180^{\circ}-B}{2}\right)}+\dfrac{\cos ^{3} \dfrac{B}{2}}{\sin \left(\dfrac{180^{\circ}-B}{2}\right)}-\dfrac{\cos \left(180^{\circ}-B\right)}{\sin B} \cdot \tan BVT=cos(2180∘−B​)sin32B​​+sin(2180∘−B​)cos32B​​−sinBcos(180∘−B)​⋅tanB =\dfrac{\sin ^{3} \dfrac{B}{2}}{\sin \dfrac{B}{2}}+\dfrac{\cos ^{3} \dfrac{B}{2}}{\cos \dfrac{B}{2}}-\dfrac{-\cos B}{\sin B} \cdot \tan B=\sin ^{2} \dfrac{B}{2}+\cos ^{2} \dfrac{B}{2}+1=2=V P=sin2B​sin32B​​+cos2B​cos32B​​−sinB−cosB​⋅tanB=sin22B​+cos22B​+1=2=VP

Suy ra điều phải chứng minh.

23 tháng 3 2022

\(a)sin^4x+cos^4x=1-2sin^2x\cdot cos^2x\) 

\(\Leftrightarrow sin^4x+2sin^2x\cdot cos^2x+cos^4x=1\)

\(\Leftrightarrow\left(sin^2x+cos^2x\right)^2=1\)(luôn đúng)

18 tháng 7 2022

a) \sin ^{4} x+\cos ^{4} x=\sin ^{4} x+\cos ^{4} x+2 \sin ^{2} x \cos ^{2} x-2 \sin ^{2} x \cos ^{2} x
\begin{aligned}&=\left(\sin ^{2} x+\cos ^{2} x\right)^{2}-2 \sin ^{2} x \cos ^{2} x \\&=1-2 \sin ^{2} x \cos ^{2} x\end{aligned}

b) \dfrac{1+\cot x}{1-\cot x}=\dfrac{1+\dfrac{1}{\tan x}}{1-\dfrac{1}{\tan x}}=\dfrac{\dfrac{\tan x+1}{\tan x}}{\dfrac{\tan x-1}{\tan x}}=\dfrac{\tan x+1}{\tan x-1}

c) \dfrac{\cos x+\sin x}{\cos ^{3} x}=\dfrac{1}{\cos ^{2} x}+\dfrac{\sin x}{\cos ^{3} x}=\tan ^{2} x+1+\tan x\left(\tan ^{2} x+1\right)
=\tan ^{3} x+\tan ^{2} x+\tan x+1

NM
21 tháng 3 2022

Xét \(\Delta'=\left(m+3\right)^2-4m-12=m^2+2m-3=\left(m-1\right)\left(m+3\right)>0\)

thì phương trình có hai nghiệm phân biệt.  hay \(\orbr{\begin{cases}m>1\\m< -3\end{cases}}\)

Để cả hai nghiệm đó lớn hơn -1 thì nghiệm nhỏ hơn theo công thức viet là : 

\(-\left(m+3\right)-\sqrt{m^2+2m-3}>-1\Leftrightarrow-m-2>\sqrt{m^2+2m-3}\)

\(\Leftrightarrow\hept{\begin{cases}-m-2\ge0\\\left(-m-2\right)^2>m^2+2m-3\end{cases}}\Leftrightarrow\hept{\begin{cases}m\le-2\\2m>-7\end{cases}}\Leftrightarrow-\frac{7}{2}< m\le-2\)

Kết hợp với điều kiện của delta phẩy ta có 

\(-\frac{7}{2}< m< -3\)

21 tháng 3 2022

bạn ý hỏi bây h mà nói chiều có đáp án thì có đầy ng trả lời r

Δ′=(m+3)2−(4m+12)=m2+2m−3>0⇒[m>1m<−3Δ′=(m+3)2−(4m+12)=m2+2m−3>0⇒[m>1m<−3

Theo hệ thức Viet: {x1+x2=−2(m+3)x1x2=4m+12{x1+x2=−2(m+3)x1x2=4m+12

Pt có 2 nghiệm lớn hơn -1 khi: −1<x1<x2⇔⎧⎨⎩(x1+1)(x2+1)>0x1+x22>−1−1<x1<x2⇔{(x1+1)(x2+1)>0x1+x22>−1

⇔{x1x2+x1+x2+1>0x1+x2>−2⇔{x1x2+x1+x2+1>0x1+x2>−2

⇔{4m+12−2(m+3)+1>0−2(m+3)>−2⇔{4m+12−2(m+3)+1>0−2(m+3)>−2

⇔⎧⎨⎩m>−72m<−2⇔{m>−72m<−2 ⇒−72<m<−2⇒−72<m<−2

Kết hợp điều kiện ban đầu ⇒−72<m<−3 

HT