K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
11 tháng 4

** Bổ sung điều kiện $a,b,c,d>0$

Lời giải:
Đặt biểu thức đã cho là $A$.

Với $a,b,c,d>0$ thì:

$A>\frac{a}{a+b+c+d}+\frac{b}{a+b+c+d}+\frac{c}{a+b+c+d}+\frac{d}{a+b+c+d}=1(*)$

Mặt khác:
Xét hiệu:

$\frac{a}{a+b+c}-\frac{a+d}{a+b+c+d}=\frac{-(bd+dc)}{(a+b+c)(a+b+c+d)}<0$ với $a,b,c,d>0$

$\Rightarrow \frac{a}{a+b+c}< \frac{a+d}{a+b+c+d}$

Hoàn toàn tương tự ta cũng có:

$\frac{b}{a+b+d}< \frac{b+c}{a+b+c+d}$

$\frac{c}{b+c+d}< \frac{c+a}{a+b+c+d}$

$\frac{d}{a+c+d}< \frac{d+b}{a+b+c+d}$

Cộng theo vế các BĐT trên thì:
$A< \frac{a+d+b+c+c+a+d+b}{a+b+c+d}=\frac{2(a+b+c+d)}{a+b+c+d}=2(**)$

Từ $(*); (**)\Rightarrow 1< A< 2$

$\Rightarrow A$ không là số tự nhiên.

AH
Akai Haruma
Giáo viên
11 tháng 4

Bạn lưu ý lần sau gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn nhé.

Gọi số quyển sách của An,Bình, Cường lần lượt là a(quyển),b(quyển),c(quyển)

(ĐK: \(a,b,c\in Z^+\))
Số sách của An,Bình,Cường lần lượt tỉ lệ với 3;4;5 nên \(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}\)
Số sách của Bình ít hơn tổng quyển sách của An và Cường là 8 quyển nên a+c-b=8

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{a+c-b}{3+5-4}=\dfrac{8}{4}=2\)

=>a=3*2=6; b=2*4=8; c=2*5=10

vậy: số quyển sách của An,Bình, Cường lần lượt là 6 quyển; 8 quyển; 10 quyển

12 tháng 4

               Giải

a; Gọi giá tiền của cây thước là y (đồng)

Số tiền còn lại của Lan sau khi mua là

200 000 - y - 2y = 200 000 - 3y (đồng)

b; Số tiền còn lại của Lan sau khi mua một cây thước là:

 200 000 - y

Số bút mà Lan có thể mua là:

 \(\dfrac{200000-y}{2y}\) 

 

 

12 tháng 4

Bài 1:

M(\(x\)) = 3\(x^{3^{ }}\) - \(x^2\) + 3 + 2\(x^3\)

N(\(x\)) = - 2\(x^3\) - \(x\) + \(x^2\) + 3

M(\(x\)) + N(\(x\)) = 3\(x^3\) - \(x^2\) + 3 + 2\(x^3\) - 2\(x^3\) - \(x\) + \(x^2\) + 3

M(\(x\)) + N(\(x\)) = (3\(x^3\) + 2\(x^3\) - 2\(x^3\)) - (\(x^2\) - \(x^2\))  - \(x\) + (3 + 3)

M(\(x\)) + N(\(x\)) = 3\(x^3\)  - \(x\) + 6

12 tháng 4

Bài 2:

a = \(\dfrac{x-2}{3x+1}\)  - \(\dfrac{x}{5}\)

Thay \(x\) = - 5 vào biểu thức a ta có:

a = \(\dfrac{-5-2}{3.\left(-5\right)+1}\)  -  \(\dfrac{-5}{5}\)

a = \(\dfrac{-7}{-14}\) + 1

a = \(\dfrac{1}{2}+1\) 

a = \(\dfrac{3}{2}\)

11 tháng 4

x=-2 hả bạn?

11 tháng 4

um

 

a: Sửa đề: ΔAIM=ΔBIC

Xét ΔAIM và ΔBIC có

IA=IB

\(\widehat{AIM}=\widehat{BIC}\)(hai góc đối đỉnh)

IM=IC

Do đó: ΔAIM=ΔBIC

=>AM=BC

Ta có: ΔAIM=ΔBIC

=>\(\widehat{IAM}=\widehat{IBC}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AM//BC

 

b: Xét ΔEAN và ΔECB có

EA=EC

\(\widehat{AEN}=\widehat{CEB}\)(hai góc đối đỉnh)

EN=EB

Do đó ΔEAN=ΔECB

=>AN=CB

Ta có: ΔEAN=ΔECB

=>\(\widehat{EAN}=\widehat{ECB}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AN//BC

c: Ta có: AN//BC

AM//BC

AN,AM có điểm chung là A

Do đó: M,A,N thẳng hàng

mà AM=AN(=BC)

nên A là trung điểm của MN

a: Xét ΔKNP vuông tại N và ΔHPN vuông tại H có

NP chung

\(\widehat{KNP}=\widehat{HPN}\)

Do đó: ΔKNP=ΔHPN

b: Ta có;ΔKNP=ΔHPN

=>\(\widehat{KPN}=\widehat{HNP}\)

=>\(\widehat{ENP}=\widehat{EPN}\)

=>ΔENP cân tại E

c: Xét ΔMNE và ΔMPE có

MN=MP

EN=EP

ME chung

Do đó: ΔMNE=ΔMPE

=>\(\widehat{NME}=\widehat{PME}\)

=>ME là phân giác của góc NMP