Cho tam giacs ABC có \(^2a=\frac{b^3+c^3-a^3}{b+c-a}\) va a=2bcosC. Chưng minh tam giác ABC đều
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có \(S=\frac{a^2-\left(b-c^2\right)}{4}=\frac{a^2-b^2-c^2+2bc}{4}\)
mà theo định lý cosin ta có \(a^2-b^2-c^2=-2bc.cos\left(A\right)\Rightarrow S=\frac{bc\left(1-cos\left(A\right)\right)}{2}\)
mà ta có công thức \(S=\frac{b.c.sin\left(A\right)}{2}\Rightarrow1-cos\left(A\right)=sin\left(A\right)\Rightarrow cos\left(A\right)+sin\left(A\right)=1\)
mà \(cos^2\left(A\right)+sin^2\left(A\right)=1\Rightarrow2sin\left(A\right).cos\left(A\right)=0\Rightarrow\orbr{\begin{cases}A=0^0\\A=90^0\end{cases}}\)
Do A>0 nên \(A=90^0\)Vậy ABC vuoogn tại A
BC=a; AC=b; AB=c
Từ C dựng đường thẳng vuông góc với AB tại H
\(\frac{a}{bc}+\frac{1}{b}=\frac{1}{c}+\frac{1}{a+b-c}.\)
\(\Rightarrow a\left(a+b-c\right)+c\left(a+b-c\right)=b\left(a+b-c\right)+bc\)
\(\Rightarrow a^2+ab-ac+ac+bc-c^2=ab+b^2-bc+bc\)
\(\Rightarrow a^2-b^2-c^2+bc=0\) (*)
Ta có \(AB=c=AH+BH\Rightarrow c^2=AH^2+BH^2+2.AH.BH\) (**)
Xét tg vuông ACH có
\(AH^2=AC^2-CH^2=b^2-CH^2\)
Xét tg vuông BCH có
\(BH^2=BC^2-CH^2=a^2-CH^2\)
Thay giá trị của \(AH^2\) và \(BH^2\) vào (**) ta có
\(c^2=b^2-CH^2+a^2-CH^2+2.AH.BH=b^2+a^2-2.CH^2+2.AH.BH\) Thay vào (*) ta có
\(a^2-b^2-\left(b^2+a^2-2.CH^2+2.AH.BH\right)+bc=0\)
\(\Rightarrow-2.b^2+2.CH^2-2.AH.BH+bc=0\)
\(\Rightarrow-2\left(b^2-CH^2\right)-2.AH.BH+bc=0\)
\(\Rightarrow-2.AH^2-2.AH.BH+bc=0\)
\(\Rightarrow bc=2.AH\left(AH+BH\right)=2.AH.AB=2.AH.c\Rightarrow b=AC=2.AH\)
Xét tg vuông ACH có
\(\cos A=\frac{AH}{AC}=\frac{AH}{2.AH}=\frac{1}{2}\Rightarrow\widehat{A}=60^o\left(dpcm\right)\)
ta có \(a^2=\frac{b^3+c^3-a^3}{b+c-a}\Leftrightarrow a^2\left(b+c\right)-a^3=b^3+c^3-a^3\Leftrightarrow a^2=\frac{b^3+c^3}{b+3}\)
hay \(a^2=b^2-bc+c^2\)
mà theo địnkh lý cosin trong tam giác ta có \(a^2=b^2-2.bc.cos\left(A\right)+c^2\Rightarrow cos\left(A\right)=\frac{1}{2}\Rightarrow A=60^0\)
ta có \(a=2b.cos\left(C\right)=2b.\frac{a^2+b^2-c^2}{2ab}\Leftrightarrow a^2=a^2+b^2-c^2\Leftrightarrow b=c\)
vì vậy ABC cân tại A mà lại có A=60 độ nên ABC đều