K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 6

loading... 

∆ABC có:

AB = BC (gt)

⇒ ∆ABC cân tại B

⇒ ∠BAC = ∠BCA (1)

Do AC là tia phân giác của ∠BAD (gt)

⇒ ∠DAC = ∠BAC (2)

Từ (1) và (2) ⇒ ∠BCA = ∠DAC

Mà ∠BCA và ∠DAC là hai góc so le trong

⇒ BC // AD

⇒ ABCD là hình thang

a: Xét ΔAEF có

AH là đường cao

AH là đường phân giác

Do đó: ΔAEF cân tại A

Xét ΔAEF có BM//EF

nên \(\dfrac{AB}{AE}=\dfrac{AM}{AF}\)

mà AE=AF

nên AB=AM

=>ΔABM cân tại A

b: Kẻ BK//AC(K\(\in\)EF)

Xét tứ giác BMFK có

BM//FK

BK//MF

DO đó: BMFK là hình bình hành

=>BK=MF

Xét ΔBDK và ΔCDF có

\(\widehat{BDK}=\widehat{CDF}\)(hai góc đối đỉnh)

DB=DC

\(\widehat{DBK}=\widehat{DCF}\)(BK//CF)

Do đó: ΔBDK=ΔCDF

=>BK=CF

Ta có: BK//FC

=>\(\widehat{BKE}=\widehat{AFE}\)

=>\(\widehat{BKE}=\widehat{BEK}\)

=>BE=BK

mà BK=FC và BK=MF

nên MF=BE=CF

\(\left(2x-3\right)^2-\left(x-5\right)\left(4x^2-1\right)=7x+6\)

=>\(4x^2-12x+9-\left(4x^3-x-20x^2+5\right)=7x+6\)

=>\(4x^2-12x+9-4x^3+20x^2+x-5-7x-6=0\)

=>\(-4x^3+24x^2-18x-2=0\)

=>\(-4x^3+4x^2+20x^2-20x+2x-2=0\)

=>\(-4x^2\left(x-1\right)+20x\left(x-1\right)+2\left(x-1\right)=0\)

=>\(\left(x-1\right)\left(-4x^2+20x+2\right)=0\)

=>\(\left[{}\begin{matrix}x-1=0\\-4x^2+20x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{5\pm3\sqrt{3}}{2}\end{matrix}\right.\)

11 tháng 6

mong các bạn giúp đỡ 

ngày 12/6 là mình đi học rồi vào buổi sáng

 

Không có mô tả.

2
10 tháng 6

\(\frac{x-1}{1999}+\frac{x-2}{1998}=\frac{x-3}{1997}+\frac{x-4}{1996}\\\Leftrightarrow \left(\frac{x-1}{1999}-1\right) +\left(\frac{x-2}{1998}-1\right)=\left(\frac{x-3}{1997}-1\right)+\left(\frac{x-4}{1996}-1\right)\\\Leftrightarrow \frac{x-2000}{1999}+\frac{x-2000}{1998}=\frac{x-2000}{1997}+\frac{x-2000}{1996}\\\Leftrightarrow \frac{x-2000}{1999}+\frac{x-2000}{1998}-\frac{x-2000}{1997}-\frac{x-2000}{1996}=0\\ \Leftrightarrow (x-2000)\left(\frac{1}{1999}+\frac{1}{1998}-\frac{1}{1997}-\frac{1}{1996}\right)=0\\\Leftrightarrow x-2000=0\left(\text{vì } \frac{1}{1999}+\frac{1}{1998}-\frac{1}{1997}-\frac{1}{1996}\ne0\right)\\\Leftrightarrow x=2000\)

Vậy phương trình đã cho có 1 nghiệm duy nhất là \(x=2000\).

10 tháng 6

cứu tui với ăng em

10 tháng 6

Tự vẽ hình nhé.

a) Theo bài ra ABCD là HCN

=> AD=BC (1) ; AD//BC

Do AD//BC => ADB=DBC (2 góc so le trong) hay ADN=CBM (2)

Ta có AN vuông góc với BD => AND=ANB=90

         CM vuông góc với BD => CMD=CMB=90

Xét tam giác AND và tam giác CMB có

       AND=CMB=90

       AD=BC ( theo (1) )

       ADN = CBM ( theo (2) )

=> tam giác AND= tam giác CMB (cạnh huyền-góc nhọn)

=> ND = MB (2 cạnh tương ứng) (dpcm)

b)   Do AN vuông góc với BD và CM vuông góc với BD

=>AN//CM (mối quan hệ từ vuông góc đến song song)

Lại có:  tam giác AND= tam giác CMB (cạnh huyền-góc nhọn) 

             => AN = CM (2 cạnh tương ứng)

Xét tứ giác ANCM có AN=CM và AN//CM

   => tứ giác ANCM là hình bình hành.

 

 

 

10 tháng 6

c) Lại thấy AN//CM => KN // CM

  Xét tứ giác KCMN có KN=CM và KN // CM

=> tứ giác KCMN là hình bình hành

=> KC // MN

=> KC//BD

Xét tứ giác DKCB có KC//BD => tứ giác DKCB là hình thang.

d) Do K là điểm đối xứng với A qua N

=>NA=NK

=> N là trung điểm của AK.

=>PN là đường trung tuyến của tam giác AKP.

Mặt khác KC//MN => CP//MB => BMP= MPC (2 góc so le trong)

Mà AMN=BMP (2 góc đồng vị)

Từ đó suy ra AMN=MPC

Vì ANM=90 nên tam giác ANM vuông tại N 

=> NAM +AMN = 90

Vì MC vuông góc với BD mà BD//CP

=> MC vuông góc với CP (mqh..)

=> MCP = 90 => tam giác MCP vuông tại C => CMP+MPC=90 

Do đó NAM + AMN = CMP + MPC = 90

Mà AMN=MPC

=> NAM = CMP

Xét tam giác ANM và tam giác MCP có

NAM = CMP (theo cmt)

AN=CM (từ phần b)

ANM=MCP(=90)

=> tam giác ANM = tam giác MCP (cạnh huyền-cạnh góc vuông)

=> AN=MP( 2 cạnh tương ứng)

và MN =CP ( 2 cạnh tương ứng)

Vì MN=CK và MN=CP

=> CK=CP

=> C là trung điểm của PK

=>AC là đường trung tuyến của tam giác AKP.

Do AM=MP => M là trung điểm của AP

=>KM là đường trung tuyến của tam giác AKP.

Xét tam giác AKP có PN là đường trung tuyến của tam giác AKP.

                                  AC là đường trung tuyến của tam giác AKP.

                                  KM là đường trung tuyến của tam giác AKP.

Từ đó suy ra PN, AC, KM đồng quy tại trọn tâm của tam giác AKP

Vậy..

a: 

Giai đoạnQuý I/2020Quý I/2021Quý I/2022
Xuất khẩu63,478,5689,1
Nhập khẩu59,5976,187,64

b: 

Giai đoạnQuý I/2020Quý I/2021Quý I/2022
Tỉ số giữa xuất và nhập1,061,031,01

c: Tổng trị giá xuất khẩu của nước ta trong quý I giai đoạn 2020-2022 là:

63,4+78,56+89,1=231,06(tỉ USD)

d: Tổng trị giá nhập khẩu của nước ta trong quý I giai đoạn 2020-2022 là:

59,59+76,1+87,64=223,33(tỉ USD)

e: Trị giá xuất khẩu trong quý I/2020 so với quý I/2021 thì giảm:

\(\dfrac{78,56-63,4}{63,4}\simeq23,91\%\)

f: Trị giá nhập khẩu trong quý I/2021 so với quý I/2020 thì tăng:

\(\dfrac{76,1-59,59}{59,59}-100\%\simeq27.71\%\)

10 tháng 6

a) 

b) Hàm số y=-x+4 cắt Oy tại \(\left(0;4\right)\) \(\Rightarrow A\left(0;4\right)\)

Hàm số y=x-4 cắt Oy tại \(\left(0;-4\right)\) \(\Rightarrow B\left(0;-4\right)\)

Ta có pt hoành độ giao điểm của y=-x+4 và y=x-4 là:

\(-x+4=x-4\Leftrightarrow x=4\)

\(\Rightarrow y=4-4=0\)

\(\Rightarrow C\left(4;0\right)\)

c) Ta có: \(A\left(0;4\right)\Rightarrow OA=4\) 

\(B\left(0;-4\right)\Rightarrow OB=4\)

\(C\left(0;4\right)\Rightarrow OC=4\)

BC = OA + OB = 4 + 4 = 8 

\(\Rightarrow S_{ABC}=\dfrac{1}{2}\cdot4\cdot8=16\) (đvdt) 

a: Xác suất thực nghiệm của biến cố "Thẻ lấy ra ghi số 7" là:

\(\dfrac{6}{30}=\dfrac{1}{5}\)

b: Gọi A là biến cố "Thẻ rút ra là số nguyên tố"

=>A={2;3;5;7;11;13}

=>n(A)=6

=>\(P_A=\dfrac{6}{15}=\dfrac{2}{5}\)

=>Khi số lần rút thẻ ngày càng lớn thì xác suất thực nghiệm của biến cố A ngày càng gần với 2/5

a: Xét tứ giác ABDC có

M là trung điểm chung của AD và BC

=>ABDC là hình bình hành

Hình bình hành ABDC có \(\widehat{BAC}=90^0\)

nên ABDC là hình chữ nhật

b: E đối xứng M qua AC

=>AC là đường trung trực của EM

=>AE=AM; CE=CM

ΔBAC vuông tại A

mà AM là đường trung tuyến

nên AM=CM=MB

AM=CM

AE=AM

CE=CM

Do đó: AM=MC=CE=AE

=>AMCE là hình thoi

c: AMCE là hình thoi

=>AE//CM

=>AE//BM

Xét tứ giác ABME có

AE//BM

AE=BM

Do đó: ABME là hình bình hành

=>AM cắt BE tại trung điểm của mỗi đường

mà I là trung điểm của AM

nên I là trung điểm của BE

=>B,I,E thẳng hàng