K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2023

Ta có:

\(AH^2=BH.HC\Rightarrow HC=\dfrac{AH^2}{BH}=\dfrac{3^2}{4}=\dfrac{9}{4}\left(cm\right)\)

\(BC=BH+HC=4+\dfrac{9}{4}=9\left(cm\right)\)

\(AB=\sqrt{BH.BC}=\sqrt{4.9}=6\left(cm\right)\)

\(AC=\sqrt{CH.BC}=\sqrt{\dfrac{9}{4}.9}=\dfrac{9}{2}\left(cm\right)\)

1 tháng 7 2023

loading...

1 tháng 7 2023

bạn gõ đề bằng latex để rõ đề

30 tháng 6 2023

\(a,\dfrac{x-\sqrt{x}}{\sqrt{x}-1}\) \(\left(dk:x\ge0,x\ne1\right)\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\\ =\sqrt{x}\)

\(b,\dfrac{1-2\sqrt{x}+x}{1-\sqrt{x}}\left(dkxd:x\ge0,x\ne1\right)\)

\(=\dfrac{1^2-2\sqrt{x}+\sqrt{x^2}}{1-\sqrt{x}}\\ =\dfrac{\left(1-\sqrt{x}\right)^2}{1-\sqrt{x}}\\ =1\)

30 tháng 6 2023

\(\dfrac{x+\sqrt{x}}{\sqrt{x}}\left(dk:x\ge0\right)\\ =\dfrac{\sqrt{x^2}+\sqrt{x}}{\sqrt{x}}\\ =\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}}\\ =\sqrt{x}+1\)

3 tháng 7 2023

Cách 1: \(\tan^2\alpha+\cot^2\alpha=\left(\tan\alpha+\cot\alpha\right)^2-2\tan\alpha\cot\alpha\) \(=2^2-2=2\) 

 \(\tan^3\alpha+\cot^3\alpha=\left(\tan\alpha+\cot\alpha\right)^3-3\tan\alpha\cot\alpha\left(\tan\alpha+\cot\alpha\right)\) \(=2^3-3.1.2=2\)

Cách 2: Ta thấy \(\cot\alpha=\dfrac{1}{\tan\alpha}\) nên ta có \(\tan\alpha+\dfrac{1}{\tan\alpha}=2\) (*). Áp dụng BDT AM-GM, ta có \(\tan\alpha+\dfrac{1}{\tan\alpha}\ge2\sqrt{\tan\alpha.\dfrac{1}{\tan\alpha}}=2\), do đó (*) xảy ra khi và chỉ khi \(\tan\alpha=\dfrac{1}{\tan\alpha}\Leftrightarrow\tan^2\alpha=1\Leftrightarrow\tan\alpha=1\) \(\Rightarrow\cot\alpha=1\). Từ đó dễ dàng tính được \(\tan^2\alpha+\cot^2\alpha=\tan^3\alpha+\cot^3\alpha=2\)

(Tuyệt đối không được dùng cách 2 khi \(\tan\alpha\) hoặc \(\cot\alpha\) âm nhé, vì bất đẳng thức AM-GM chỉ dùng cho số dương thôi.)

30 tháng 6 2023

Chỗ này phải sửa thành 2 mới đúng nhé.

AH
Akai Haruma
Giáo viên
29 tháng 6 2023

Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề hơn.

29 tháng 6 2023

Ta có : \(x^4+2x^3-10x^2+10x-3=y^2\)

\(\Leftrightarrow\left(x^4+2x^3-3\right)-\left(10x^2-10x\right)=y^2\)

\(\Leftrightarrow\left(x-1\right).\left(x^3+3x^2-7x+3\right)=y^2\)

\(\Leftrightarrow\left(x-1\right)^2.\left(x^2+4x-3\right)=y^2\)

Vì \(x,y\inℤ\) nên y2 là số chính phương khi 

x2 + 4x - 3 là số chính phương

Đặt x2 + 4x - 3 = t2

\(\Leftrightarrow\left(x+t+2\right).\left(x-t+2\right)=7\)

Ta có bảng 

x + t + 2 1 7 -1 -7
x - t + 2 7 1 -7 -1
x 2 2 -6 -6
t -3 3 3 -3

Ta được x = 2 ; x = -6 thỏa 

Với x = 2 <=> y = \(\pm3\)

Với x = -6 <=> y = \(\pm21\)