K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 6 2023

Gọi số xe loại một là: \(x\) (chiếc); (\(x\) \(\in\)N*)

Khi đó số xe loại hai là: 50 - \(x\) (chiếc)

Số tiền mua xe loại một là: \(x\) \(\times\) 2 = 2\(x\) ( triệu đồng)

Số tiền mua xe loại hai là: (50 - \(x\)\(\times\) 6 = 300 - 6\(x\) (triệu đồng)

Theo bài ra ta có phương trình: 2\(x\) + 300 - 6\(x\) = 160

                                                   300 - 4\(x\) = 160

                                                   4\(x\) = 300 - 160

                                                   4\(x\) = 140

                                                      \(x\) = 140 : 4

                                                     \(x\) = 35

Vậy số xe loại một là 35 chiếc

Số xe loại hai là: 50 - 35 =  15 (chiếc)

Kết luận: Cửa hàng đã nhập 35 chiếc xe loại 1 và 15 chiếc xe loại 2

7 tháng 6 2023

\(\left(x+y\right)^2+xy^2+2y^3=9y^2+8x\)

\(\Leftrightarrow x^2+y^2+2xy+xy^2+2y^3=9y^2+8x\)

\(\Leftrightarrow xy^2+x^2-8y^2-8x+2xy+2y^3=0\)

\(\Leftrightarrow x\left(y^2+x\right)-8\left(y^2+x\right)+2y\left(y^2+x\right)=0\)

\(\Leftrightarrow\left(y^2+x\right)\left(x-8+2y\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y^2+x=0\\x+2y=8\end{matrix}\right.\)

TH1: \(y^2+x=0\Leftrightarrow x=y=0\), thỏa mãn.

TH2: \(x+2y=8\Rightarrow\left(x;y\right)\in\left\{\left(0;4\right);\left(2;3\right);\left(4;2\right);\left(6;1\right);\left(8;0\right)\right\}\)

Vậy pt đã cho có các cặp nghiệm tự nhiên (x; y) là:

\(\left(x;y\right)\in\left\{\left(0;0\right);\left(0;4\right);\left(2;3\right);\left(4;2\right);\left(6;1\right);\left(8;0\right)\right\}\)

loading...

2
7 tháng 6 2023

\(1)\)

\(a,\left\{{}\begin{matrix}2\left(x+1\right)=2x-y+4\\x+2y=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+2-2x+y-4=0\\x+2y=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=2\\x+2.2=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=1\end{matrix}\right.\)

Vậy hệ pt có nghiệm duy nhất \(\left(x;y\right)=\left(1;2\right)\)

\(b,x^2-2x-3=0\)

\(\Delta=b^2-4ac=\left(-2\right)^2-4.\left(-3\right)=4+12=16>0\)

\(\Rightarrow\) Pt có 2 nghiệm phân biệt \(x_1;x_2\)

Ta có :

\(\left\{{}\begin{matrix}x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{2+4}{2}=3\\x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{2-4}{2}=-1\end{matrix}\right.\)

Vậy \(S=\left\{3;-1\right\}\)

 

 

7 tháng 6 2023

Bài 2:

Gọi chiều rộng mảnh vườn là: \(x\) (m); \(x\) > 0

Chiều dài mảnh vườn là: \(x\) + 6 (m)

Diện tích mảnh vườn là: (\(x+6\))\(\times\)\(x\)  = \(x^2\)+ 6\(x\) (m2)

Theo bài ra ta có phương trình: \(x^2\) + 6\(x\) = 216

                                                   \(x^2\) + 6\(x\) - 216 = 0

                                                  △' =  32 + 216 = 225 > 0

                                                   \(x\)1 = \(\dfrac{-3+\sqrt{225}}{1}\) = 12

                                                              \(x\)2 = \(\dfrac{-3-\sqrt{225}}{1}\) = -18 (loại)

Vậy \(x\) = 12 

Chiều rộng của hình chữ nhật là: 12 m

Chiều dài của mảnh vườn là: 12 + 6  = 18(m)

Kết luận: Chiều dài của mảnh vườn là 18 m

                Chiều rộng của mảnh vườn là 12 m

 

7 tháng 6 2023

\(Xét:\dfrac{\sqrt{x}}{\sqrt{x}+1}\) ta thấy rõ ràng : \(\sqrt{x}\ge0\)

\(\Rightarrow\sqrt{x}+1\ge1\)

\(\Rightarrow\sqrt{x}\) không thể : \(\ge\sqrt{x}+1\)

Do đó : \(0< \dfrac{\sqrt{x}}{\sqrt{x}+1}< 1\)

DT
7 tháng 6 2023

\(\dfrac{\sqrt{x}}{\sqrt{x}+1}\left(ĐK:x\ge0\right)\\ =\dfrac{\sqrt{x}+1}{\sqrt{x}+1}-\dfrac{1}{\sqrt{x}+1}\\ =1-\dfrac{1}{\sqrt{x}+1}\)

Ta thấy :

\(1>0,\sqrt{x}+1\ge1>0\forall x\ge0\\ =>\dfrac{1}{\sqrt{x}+1}>0\\ =>-\dfrac{1}{\sqrt{x}+1}< 0\\ =>1-\dfrac{1}{\sqrt{x}+1}< 1\\ =>\dfrac{\sqrt{x}}{\sqrt{x}+1}< 1\)

7 tháng 6 2023

\(B=\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{2\sqrt{x}-1}{\sqrt{x}-3}-\dfrac{2x-\sqrt{x}-3}{x-9}\left(dkxd:x>0,x\ne9\right)\)

\(=\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{2\sqrt{x}-1}{\sqrt{x}-3}-\dfrac{2x-\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)+\left(2\sqrt{x}-1\right)\left(\sqrt{x}+3\right)-\left(2x-\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{x-3\sqrt{x}+2x+6\sqrt{x}-\sqrt{x}-3-2x+\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{x+3\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{\sqrt{x}}{\sqrt{x}-3}\)

Ta có : \(P=A+\dfrac{1}{B}=\dfrac{x+7}{\sqrt{x}}+\left(1:\dfrac{\sqrt{x}}{\sqrt{x}-3}\right)=\dfrac{x+7}{\sqrt{x}}+\dfrac{\sqrt{x}-3}{\sqrt{x}}\)

\(=\dfrac{x+7+\sqrt{x}-3}{\sqrt{x}}=\dfrac{x+\sqrt{x}+4}{\sqrt{x}}\) \(=1+\left(\sqrt{x}+\dfrac{4}{\sqrt{x}}\right)\left(x>0\right)\)

Áp dụng BĐT Cosi, ta có :

\(\sqrt{x}+\dfrac{4}{\sqrt{x}}\ge2\sqrt{\sqrt{x}.\dfrac{4}{\sqrt{x}}}=2\sqrt{4}=4\)

Dấu '' = '' xảy ra khi \(\sqrt{x}=\dfrac{4}{\sqrt{x}}\Leftrightarrow x-4=0\Leftrightarrow x=4\)

Vậy \(min_P=4\) khi và chỉ khi \(x=4\)

 

8 tháng 6 2023

B C D H A E I F

a/ H và E cùng nhìn AB dưới 1 góc vuông => ABHE là tứ giác nội tiếp

b/

\(\widehat{BDC}=90^o\) (góc nội tiếp chắn nửa đường tròn)

Xét tg vuông BHI và tg vuông BDC có

\(\widehat{DBC}\) chung => tg BHI đồng dạng với tg BDC

\(\Rightarrow\dfrac{BI}{BC}=\dfrac{BH}{BD}\Rightarrow BI.BD=BH.BC\)

c/

Xét tứ giác nội tiếp ABHE có

\(\widehat{HAE}=\widehat{CBD}\) (góc nt cùng chắn cung HE) (1)

\(\widehat{AHE}=\widehat{ABD}\) (góc nt cùng chắn cung AE) (2)

Xét (O) có

\(\widehat{CBD}=\widehat{CAD}\) (góc nt cùng chắn cung CD) (3)

\(\widehat{ABD}=\widehat{ACD}\) (góc nt cùng chắn cung AD) (4)

Từ (1) và (3) \(\Rightarrow\widehat{HAE}=\widehat{CAD}\)  (5)

Từ (2) và (4) \(\Rightarrow\widehat{AHE}=\widehat{ACD}\) (6)

Từ (5) và (6) => tg AHE đồng dạng với tg ACD (g.g.g)

d/

 

 

 

 

 

6 tháng 6 2023

\(\sqrt{11+4\sqrt{6}}\)

\(=\sqrt{8+4\sqrt{2.3}+3}\)

\(=\sqrt{\left(2\sqrt{2}\right)^2+2.2\sqrt{3}.\sqrt{2}+\left(\sqrt{3}\right)^2}\)

\(=\sqrt{\left(2\sqrt{2}+\sqrt{3}\right)^2}\)

\(=\left|2\sqrt{2}+\sqrt{3}\right|\)

\(=2\sqrt{2}+\sqrt{3}\)

5 tháng 6 2023

A,B,C >0 ạ.

DT
5 tháng 6 2023

Chứng minh : `(a+b)^{3}+c^{3}-3ab(a+b+c)>0`

`<=>(a+b+c)[(a+b)^{2}-c(a+b)+c^{2}]-3ab(a+b+c)>0`

`<=>(a+b+c)(a^{2}+2ab+b^{2}-ac-bc+c^{2}-3ab)>0`

`<=>(a+b+c)(a^{2}+b^{2}+c^{2}-ac-bc-ab)>0`

`<=>(a+b+c)(2a^{2}+2b^{2}+2c^{2}-2ac-2bc-2ab)>0`

`<=>(a+b+c).[(a-b)^{2}+(b-c)^{2}+(c-a)^{2}]>0`

Ta thấy :

+) `a+b+c>0` ( do `a,b,c>0` ) 

+) `(a-b)^{2}+(b-c)^{2}+(c-a)^{2}>=0`

Dấu "=" xảy ra khi `a=b=c`

Mình nghĩ bạn thiếu đề là : 3 số abc đôi một khác nhau.

Vậy đã chứng minh được đề.