Bài 4: (3 điểm) Từ điểm M nằm ngoài (O,R), kẻ hai tiếp tuyến MA, MB tới đường tròn (A và
B là các tiếp điểm). Gọi N là trung điểm của MA; BN cắt (O) tại C. a/ Chứng minh: Tử giác MAOB nội tiếp và N * A ^ 2 =NB.NC . b/ Tia MC cắt (O) tại điểm thứ hai D. Chứng minh BD = AM. c/ Gọi I là trung điểm của CD; K là giao điểm của AB và CD, Chứng minh: MC .MD=MI.MK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số dãy ghế ban đầu là x và số ghế trong mỗi dãy ban đầu là y (với \(x;y\in N\) và \(x;y>0\))
Do hội trường ban đầu có 510 chỗ ngồi nên ta có: \(xy=510\)
Số dãy ghế lúc sau: \(x+3\)
Số ghế mỗi dãy lúc sau: \(y+2\)
Do sau khi tăng thì đủ ghế cho 640 người nên: \(\left(x+3\right)\left(y+2\right)=640\)
Ta được hệ:
\(\left\{{}\begin{matrix}xy=510\\\left(x+3\right)\left(y+2\right)=640\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy=510\\xy+2x+3y+6=640\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy=510\\2x+3y=124\end{matrix}\right.\)
\(\Rightarrow x\left(124-2x\right)=510.3\)
\(\Rightarrow2x^2-124x+1530=0\Rightarrow\left[{}\begin{matrix}x=45\Rightarrow y=\dfrac{34}{3}\left(loại\right)\\x=17\Rightarrow y=30\end{matrix}\right.\)
\(A=\left(x^3+1+1\right)+\left(y^3+1+1\right)+\left(z^3+1+1\right)-6\)
\(A\ge3\sqrt[3]{x^3}+3\sqrt[3]{y^3}+3\sqrt[3]{z^3}-6=3\left(x+y+z\right)-6\ge3.3-6=3\)
\(A_{min}=3\) khi \(x=y=z=1\)
1/ Ta có:
• Góc AHB bằng 90 độ (vì AD là đường cao của tam giác ABD).
• Góc AEB bằng góc AFB bằng 90 độ (vì AB là đường cao của tam giác AFB và AC là đường cao của tam giác AEC).
Góc AHE bằng góc AFE (vì đường cao AH đồng quy với đường chéo EF của tứ giác AHEF).
• Góc AHP bằng góc AKP bằng 90 độ (vì KA là đường đường kính của đường tròn (O)).
• Góc AEP bằng góc AFP (vì đường cao AE đồng quy với đường chéo AF của tứ giác AEPF).
Do đó, ta có thể kết luận rằng 5 điểm P, A, E, H, F nằm trên cùng một đường tròn. Để xác định tâm T của đường tròn này, ta lấy hai đường kính của đường tròn là AP và EF, sau đó kẻ đường thẳng qua giữa chúng. Đường thẳng này cắt đường tròn tại T, là tâm của đường tròn.
2/ Ta có:
• Góc AHE bằng góc AFE (vì đường cao AH đồng quy với đường chéo EF của tứ giác AHEF).
• Góc EHF bằng 90 độ (vì EF là đường cao của tam giác EHF).
o Góc FHE bằng góc FEM (vì đường cao FH đồng quy với đường chéo EM của tứ giác FHEM).
Do đó, ta có thể kết luận rằng EM và FM là hai tiếp tuyến của đường tròn (T).
3/ Ta cần chứng minh rằng tam giác DEF nội tiếp đường tròn (M). Ta có:
• Góc EHF bằng 90 độ (vì EF là đường cao của tam giác EHF).
• Góc FEM bằng góc FHE (vì đường cao FH đồng quy với đường chéo EM của tứ giác FHEM). • Góc FHE bằng góc DAE
Theo hệ thức Viet \(\left\{{}\begin{matrix}x_1+x_2=2>0\\x_1x_2=\dfrac{1}{4}>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1>0\\x_2>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left|x_1\right|=x_1\\\left|x_2\right|=x_2\end{matrix}\right.\)
\(\Rightarrow A=\dfrac{x_1\left|x_1\right|-x_2\left|x_2\right|}{x_1^3-x_2^3}=\dfrac{x_1^2-x_2^2}{x_1^3-x_2^3}=\dfrac{\left(x_1-x_2\right)\left(x_1+x_2\right)}{\left(x_1-x_2\right)\left(x_1^2+x_1x_2+x_2^2\right)}\)
\(=\dfrac{x_1+x_2}{x_1^2+x_1x_2+x_2^2}=\dfrac{x_1+x_2}{\left(x_1+x_2\right)^2-x_1x_2}\)
\(=\dfrac{2}{2^2-\dfrac{1}{4}}=\dfrac{8}{15}\)
Lời giải:
Áp dụng BĐT Cô-si:
$x^3+1+1\geq 3x$
$y^3+1+1\geq 3y$
$z^3+1+1\geq 3z$
$\Rightarrow x^3+y^3+z^3+6\geq 3(x+y+z)\geq 3.3=9$
$\Rightarrow A=x^3+y^3+z^3\geq 3$
Vậy $A_{\min}=3$. Giá trị này đạt tại $x=y=z=1$
Ta có :
y = m\(x\) + 2
⇒ y - m\(x\) - 2 = 0
⇒ -m\(x\) + y - 2 = 0
⇒d(O;d) = \(\dfrac{\left|0-0-2\right|}{\sqrt{m^2+1}}\) = 1
⇒ \(\sqrt{1+m^2}\) = 2
⇒ 1 + m2 = 4 ⇒ m2 = 3 ⇒ m = -\(\sqrt{3}\); m = \(\sqrt{3}\)
b, d(O;d) = \(\dfrac{2}{\sqrt{m^2+1}}\)
2 > 0; 1 + m2 > 0 Vậy \(\dfrac{2}{\sqrt{m^2+1}}\) lớn nhất ⇔ 1 + m2 nhỏ nhất.
m2 ≥ 0 ⇒ 1 + m2 ≥ 1 vậy m2 + 1 đạt giá trị nhỏ nhất là 1 khi m = 0
⇒d(max) = 2 ⇒ m= 0
Vậy m = 0 thì khoảng cách từ gốc tọa độ đến đường thẳng d là lớn nhất và khoảng cách đó là 2
Kết luận a, Với m = -\(\sqrt{3}\); \(\sqrt{3}\) thì khoảng cách từ gốc tọa độ tới d bằng 1
b, Với m = 0 thì khoảng cách từ gốc tọa độ tới d bằng 2 là khoảng cách lớn nhất .