Cho tam giác ABC cân tại A Gọi I là trung điểm BC a) Chứng minh tam giác ABI bằng tam giác AC
b) Vẽ BK vuông góc AC, CN vuông góc AB Cm: AK = AN
c) Cm: KC> MK-MC
Giải giúp em câu c) với ạ, em đang cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: x<>3/2
\(\dfrac{\left(2x-3\right)^2}{2x-3}-\left(1-2x\right)\left(x-2\right)=2x^2-1\)
=>\(2x-3+\left(2x-1\right)\left(x-2\right)-2x^2+1=0\)
=>\(2x^2-5x+2-2x^2+2x-2=0\)
=>-3x=0
=>x=0(nhận)
Gọi O là trung điểm của AE
Ta có: ΔABC cân tại A
mà AD là đường trung tuyến
nên AD là phân giác của góc BAC và AD\(\perp\)BC
=>\(\widehat{BAD}=\widehat{CAD}\left(3\right)\)
Vì \(\widehat{AME}=\widehat{ADE}=\widehat{ANE}=90^0\)
nên A,M,E,D,N cùng thuộc đường tròn đường kính AE
=>A,M,E,D,N cùng thuộc (O)
Xét (O) có
\(\widehat{DMN}\) là góc nội tiếp chắn cung DN
\(\widehat{DAN}\) là góc nội tiếp chắn cung DN
Do đó: \(\widehat{DMN}=\widehat{DAN}\)(1)
Xét (O) có
\(\widehat{DNM}\) là góc nội tiếp chắn cung DM
\(\widehat{DAM}\) là góc nội tiếp chắn cung DM
Do đó: \(\widehat{DNM}=\widehat{DAM}\left(2\right)\)
Từ (1),(2),(3) suy ra \(\widehat{DMN}=\widehat{DNM}\)
=>DM=DN
Lời giải:
a. Xét tam giác $ABI$ và $ACI$ có:
$AI$ chung
$AB=AC$ (do $ABC$ cân tại $A$)
$IB=IC$
$\Rightarrow \triangle ABI=\triangle ACI$ (c.c.c)
b.
Xét tam giác $ABK$ và $ACN$ có:
$\widehat{A}$ chung
$\widehat{AKB}=\widehat{ANC}=90^0$
$AB=AC$
$\Rightarrow \triangle ABK=\triangle ACN$ (cạnh huyền - góc nhọn)
$\Rightarrow AK=AN$
$M$ là điểm nào bạn nhỉ?
Câu 4:
Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔBAD=ΔBED
=>BA=BE và DA=DE
Ta có: BA=BE
=>B nằm trên đường trung trực của AE(1)
Ta có: DA=DE
=>D nằm trên đường trung trực của AE(2)
Từ (1) và (2) suy ra BD là đường trung trực của AE
Câu 5:
a: ΔABC cân tại A
mà AI là đường trung tuyến
nên AI\(\perp\)BC tại I
Ta có: I là trung điểm của BC
=>\(IB=IC=\dfrac{BC}{2}=4\left(cm\right)\)
ΔAIB vuông tại I
=>\(AI^2+IB^2=AB^2\)
=>\(AI^2=5^2-4^2=9\)
=>AI=3(cm)
Xét ΔABC có
AI là đường trung tuyến
G là trọng tâm
Do đó: \(IG=\dfrac{1}{3}IA=\dfrac{1}{3}\cdot3=1\left(cm\right)\)
ΔBIG vuông tại I
=>\(IB^2+IG^2=GB^2\)
=>\(GB^2=4^2+1^2=17\)
=>\(GB=\sqrt{17}\left(cm\right)\)
a: \(Q\left(x\right)=2x^2+x^3-2x^2+3x+1-5x^4\)
\(=-5x^4+x^3+\left(2x^2-2x^2\right)+3x+1\)
\(=-5x^4+x^3+3x+1\)
b: Bậc là 4
Hệ số tự do là 1
Hệ số cao nhất là -5
Sửa đề: M là giao điểm của BK,CN
c: Xét ΔKCM có KC+MC>MK(BĐT tam giác)
=>KC>MK-MC