tóm tắt những bài trọng tâm cần phải nắm chắc ở lớp 7 dc k ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Sửa đề: \(f\left(x\right)=3x\left(1-3x+2x^3\right)-2x^2\left(-4+3x^2-x\right)\)
\(=3x-9x^2+6x^4+8x^2-6x^4+2x^3\)
\(=2x^3-x^2+3x\)
\(g\left(x\right)=-4\left(x^4+x^2+1\right)+x^3\left(4x+2\right)+4\)
\(=-4x^4-4x^2-4+4x^3+2x^3+4\)
\(=2x^3-4x^2\)
Bậc là 3
Hệ số cao nhất là 2
Hệ số tự do là 0
2: f(x)=g(x)+h(x)
=>h(x)=f(x)-g(x)
\(=2x^3-x^2+3x-2x^3+4x^2=3x^2+3x\)
3: Đặt h(x)=0
=>3x(x+1)=0
=>x(x+1)=0
=>\(\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
1. `G(x)=-4(x^4+x^2+1)+x^3(4x+2)+4`
`=-4x^4-4x^2-4+4x^4+2x^3+4`
`=(4x^4-4x^4)+2x^3-4x^2+(4-4)`
`=2x^3-4x^2`
Bậc 3
Hệ số cao nhất: 2
Hệ số tự đó: 0
2. `F(x) = G(x) + H(x)`
`=>H(x)=F(x) - G(x)`
`=>H(x)=[3x(1-3x+2x^3)-2x^2(-4+3x^2-x)]-(2x^3-4x^2)
`=>H(x)=3x-9x^2+6x^4+8x^2-6x^4+2x^3-2x^3+4x^2`
`=>H(x)=3x^2+3x`
3. `H(x)=3x^2+3x=0`
`=>3x(x+1)=0`
TH1: `x=0`
TH2: `x+1=0=>x=-1`
Xét ΔABE có: \(\widehat{BAE}+\widehat{ABE}+\widehat{AEB}=180^o\)
\(\Rightarrow90^o+x+x=180^o\Rightarrow2x=180^o-90^o=90^o\)
\(\Rightarrow x=\dfrac{90^o}{2}=45^o\)
Xét ΔABC có: \(\widehat{ABC}+\widehat{BAC}+\widehat{CAB}=180^o\)
\(\Rightarrow\left(x+y\right)+90^o+30^o=180^o\)
\(\Rightarrow\left(x+y\right)+120^o=180^o\)
\(\Rightarrow45^o+y=180^o-120^o\)
\(\Rightarrow45^o+y=60^o\)
\(\Rightarrow y=60^o-45^o=15^o\)
∆ABE vuông tại A (gt)
⇒ ∠ABE + ∠AEB = 90⁰
⇒ x + x = 90⁰
⇒ x = 90⁰ : 2
= 45⁰
∆ABC vuông tại A (gt)
⇒ ∠ABC + ∠ACB = 90⁰
⇒ ∠ABC = 90⁰ - ∠ACB
= 90⁰ - 30⁰
= 60⁰
⇒ y = ∠ABC - x
= 60⁰ - 45⁰
= 15⁰
\(\left(\dfrac{1}{4}-\dfrac{2}{3}\right):\dfrac{3x}{5}=\dfrac{5}{2}\Leftrightarrow\dfrac{-5}{12}:\dfrac{3x}{5}=\dfrac{5}{2}\Leftrightarrow\dfrac{3x}{5}=-\dfrac{1}{6}\Leftrightarrow x=-\dfrac{5}{18}\)
\(\left(\dfrac{1}{4}-\dfrac{2}{3}\right):\dfrac{3x}{5}=\dfrac{5}{2}\)
\(\Leftrightarrow\dfrac{-5}{12}:\dfrac{3x}{5}=\dfrac{5}{2}\)
\(\Leftrightarrow\dfrac{3x}{5}=\dfrac{-5}{12}:\dfrac{5}{2}\)
\(\Leftrightarrow\dfrac{3x}{5}=\dfrac{-1}{6}\)
\(\Leftrightarrow x=\dfrac{-1}{6}:\dfrac{3}{5}\)
\(\Leftrightarrow x=-\dfrac{5}{18}\)
Vậy \(x=-\dfrac{5}{18}\)
\(D=10^9+10^8+10^7\)
\(=10^7\left(10^2+10+1\right)\)
\(=10^7\cdot101=10^6\cdot1010=10^6\cdot555\cdot2=10^6\cdot222\cdot5\)
=>D chia hết cho 555 và D chia hết cho 222
Ta có :
\(D=10^9+10^8+10^7\)
\(=10^7.\left(10^2+10+1\right)\)
\(=10^7.111\)
\(=10^6.5.2.111\)
\(=10^6.555.2=10^6.5.222\)
\(\Rightarrow D\) chia hết cho \(555\) và \(222\)
a: Xét ΔBAD vuông tại A và ΔBMD vuông tại M có
BD chung
\(\widehat{ABD}=\widehat{MBD}\)
Do đó: ΔBAD=ΔBMD
b: ΔBAD=ΔBMD
=>DA=DM
mà DM<DC(ΔDMC vuông tại M)
nên DA<DC
c: ΔBAD=ΔBMD
=>BA=BM
=>ΔBAM cân tại B
Ta có: ΔBAM cân tại B
mà BI là đường phân giác
nên BI\(\perp\)AM và I là trung điểm của AM
Ta có: BI\(\perp\)AM
ME\(\perp\)AM
Do đó: ID//ME
Xét ΔAME có
I là trung điểm của AM
ID//ME
Do đó: D là trung điểm của AE
Xét ΔAME có
AK,EI,MD là các đường trung tuyến
Do đó: AK,EI,MD đồng quy
a: Vì O thuộc tia đối của tia AB
nên A nằm giữa O và B
=>OB=OA+AB=4+6=10(cm)
M là trung điểm của OA
=>\(OM=MA=\dfrac{OA}{2}=\dfrac{4}{2}=2\left(cm\right)\)
N là trung điểm của OB
=>\(ON=NB=\dfrac{OB}{2}=5\left(cm\right)\)
Vì OM<ON
nên M nằm giữa O và N
=>OM+MN=ON
=>MN+2=5
=>MN=3(cm)
b: \(MN=ON-OM=\dfrac{OB-OA}{2}=\dfrac{BA}{2}\)
=>MN không phụ thuộc vào điểm O
c: Gọi số điểm phải lấy thêm là n(điểm)
Tổng số điểm trên đoạn thẳng AB lúc này là n+2(điểm)
Số tam giác tạo thành là \(C^2_{n+2}\left(tamgiác\right)\)
Theo đề, ta có: \(C^2_{n+2}=465\)
=>\(\dfrac{\left(n+2\right)!}{\left(n+2-2\right)!\cdot2!}=465\)
=>(n+1)(n+2)=930
=>\(n^2+3n-928=0\)
=>\(\left[{}\begin{matrix}n=29\left(nhận\right)\\n=-32\left(loại\right)\end{matrix}\right.\)
Vậy: Số điểm phải lấy thêm là 29 điểm