Cho hàm số liên tục trên với thỏa mãn , phân biệt. Chứng minh rằng
(Ở đây kí hiệu nghĩa là tồn tại duy nhất)
#Toán lớp 11Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Đặt $u_2=a$.
$u_2^2+u_3^2+u_4^2=a^2+(a-3)^2+(a-6)^2=3a^2-18a+45$
$=3(a-3)^2+18\geq 18$
Vậy $u_2^2+u_3^2+u_4^2$ đạt min =18 khi $a-3=0\Leftrightarrow a=3$
Tổng 100 số hạng đầu tiên:
$S_{100}=u_1+u_2+u_3+...+u_{100}$
$=(u_2-d)+u_2+(u_2+d)+(u_2+2d)+...+(u_2+98d)$
$=100u_2+(-1+0+1+2+...+98)d$
$=100.3+4850(-3)=-14250$
A = 4 ( 2 sinx . cosx )2 . cos22x + cos24x
A = 4 . sin22x . cos22x + cos24x
A = ( 2 sin2x . cos2x)2 + cos24x
A = sin2 4x + cos24x = 1
Lời giải:
Xét csn $(u_n)$ với công bội $q$
Ta có:
$S_n=u_1+u_2+...+u_n=u_1+u_1q+u_1q^2+....+u_1q^{n-1}$
$=u_1(1+q+q^2+....+q^{n-1})$
$qS_n=u_1(q+q^2+q^3+....+q^n)$
$\Rightarrow qS_n-S_n=u_1(q^n-1)$
$\Rightarrow S_n(q-1)=u_1(q^n-1)$
$\Rightarrow S_n=\frac{u_1(q^n-1)}{q-1}=\frac{u_1(1-q^n)}{1-q}$
Ta có đpcm.
Ta thấy quy luật của dãy này là dãy các số nguyên tố liên tiếp tăng dần. Do đó \(u_8\) chính là số nguyên tố thứ 8 hay \(u_8=19\).