Thầy cô và các bạn giải giúp hộ con bài 6 câu b với ạ?con cảm ơn cả nhà.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi phân số cần tìm có dạng là \(\dfrac{a}{b}\)
Nếu thêm 2 đơn vị vào tử số thì phân số mới có giá trị bằng 1 nên \(\dfrac{a+2}{b}=1\)
=>a+2=b
=>b=a+2
Nếu chuyển 5 đơn vị từ tử số xuống phân số thì phân số mới có giá trị là 1/2 nên \(\dfrac{a-5}{b+5}=\dfrac{1}{2}\)
=>2(a-5)=b+5
=>2a-10=a+7
=>2a-a=10+7
=>a=17
=>b=17+2=19
vậy: Phân số cần tìm là \(\dfrac{17}{19}\)
Gọi độ dài mảnh đất ban đầu là x(m)
(Điều kiện: x>0)
Chiều dài mảnh đất mới là x+8(m)
Chiều rộng mảnh đất mới là x+4(m)
Diện tích mảnh đất đó tăng thêm 360m2 nên ta có:
\(\left(x+8\right)\left(x+4\right)-x^2=360\)
=>\(x^2+12x+32-x^2=360\)
=>12x=360-32=328
=>\(x=\dfrac{328}{12}=\dfrac{82}{3}\left(nhận\right)\)
Diện tích mảnh đất ban đầu là \(\left(\dfrac{82}{3}\right)^2=\dfrac{6724}{9}\left(m^2\right)\)
a: \(\left\{{}\begin{matrix}2\left(x+y\right)+3\left(x-y\right)=4\\x+y+2\left(x-y\right)=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+2y+3x-3y=4\\x+y+2x-2y=5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}5x-y=4\\3x-y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x-y-3x+y=4-5\\3x-y=5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2x=-1\\y=3x-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=3\cdot\dfrac{-1}{2}-5=-\dfrac{3}{2}-5=-\dfrac{13}{2}\end{matrix}\right.\)
b: \(\left\{{}\begin{matrix}\left(x+1\right)\left(y-1\right)=xy-1\\\left(x-3\right)\left(y+3\right)=xy-3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}xy-x+y-1=xy-1\\xy+3x-3y-9=xy-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-x+y=0\\3x-3y=6\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x-y=0\\x-y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-y-x+y=0-2\\x-y=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}0y=-2\\x-y=0\end{matrix}\right.\Leftrightarrow\left(x;y\right)\in\varnothing\)
ΔABC=ΔDEF
=>\(\widehat{A}=\widehat{D}\)
=>\(\widehat{D}=55^0\)
ΔABC=ΔDEF
=>\(\widehat{B}=\widehat{E}\)
=>\(\widehat{B}=75^0\)
Xét ΔABC có \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)
=>\(\widehat{C}=180^0-55^0-75^0=50^0\)
=>\(\widehat{F}=\widehat{C}=50^0\)
\(\dfrac{11}{3}+\left|x\right|=\dfrac{9}{4}\)
=>\(\left|x\right|=\dfrac{9}{4}-\dfrac{11}{3}=\dfrac{27}{12}-\dfrac{44}{12}=-\dfrac{17}{12}\)
mà \(\left|x\right|>=0\forall x\)
nên \(x\in\varnothing\)
\(\left(\dfrac{1}{2}\right)^{x+2}=16^{4-2x}\)
=>\(2^{-x-2}=2^{4\left(4-2x\right)}\)
=>-x-2=4*(4-2x)
=>-x-2=16-8x
=>-x+8x=16+2
=>7x=18
=>\(x=\dfrac{18}{7}\)
a: \(\dfrac{x}{y}+\dfrac{y}{x}>=2\cdot\sqrt{\dfrac{x}{y}\cdot\dfrac{y}{x}}=2\)
b: \(\dfrac{1}{x}+\dfrac{1}{y}>=\dfrac{4}{x+y}\)
=>\(\dfrac{x+y}{xy}>=\dfrac{4}{x+y}\)
=>\(\left(x+y\right)^2>=4xy\)
=>\(x^2+2xy+y^2-4xy>=0\)
=>\(x^2-2xy+y^2>=0\)
=>\(\left(x-y\right)^2>=0\)(luôn đúng)
Bài 2:
a) \(\dfrac{-7}{-13}=\dfrac{7}{13}\) là số hưu tỉ dương
b) \(\dfrac{2}{-17}=-\dfrac{2}{17}\) là số hưu tỉ âm
c) \(-\dfrac{-6}{5}=\dfrac{6}{5}\) là số hưu tỉ dương
Bài 3:
a) \(-2\dfrac{1}{4}=-\left(2+\dfrac{1}{4}\right)=-\dfrac{9}{4}\)
b) \(6\dfrac{2}{3}=6+\dfrac{2}{3}=\dfrac{20}{3}\)
c) \(-3\dfrac{1}{4}=-\left(3+\dfrac{1}{4}\right)=-\dfrac{13}{4}\)
a: \(x^2+y^2>=2xy\)
=>\(x^2-2xy+y^2>=0\)
=>\(\left(x-y\right)^2>=0\)(luôn đúng)
b: \(x^2+4xy>=-4y^2\)
=>\(x^2+4xy+4y^2>=0\)
=>\(\left(x+2y\right)^2>=0\)(luôn đúng)
c: \(2\left(x^2+y^2\right)>=\left(x+y\right)^2\)
=>\(2x^2+2y^2-x^2-2xy-y^2>=0\)
=>\(x^2-2xy+y^2>=0\)
=>\(\left(x-y\right)^2>=0\)(luôn đúng)
b: Chọn mp(SAC) có chứa SC
\(I\in SA\subset\left(SAC\right);I\in\left(BIK\right)\)
Do đó: \(I\in\left(SAC\right)\cap\left(BIK\right)\)
Trong mp(ABCD), gọi H là giao điểm của AC và BK
=>\(H\in\left(SAC\right)\cap\left(BIK\right)\)
=>\(\left(SAC\right)\cap\left(BIK\right)=HI\)
Gọi M là giao điểm của HI với SC
=>M là giao điểm của SC với mp(BIK)