Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức sau:
A=\(3sin^2x+6cos^2x\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lần sau em đăng trong h nhé!
Hướng dẫn:
\(x-\sqrt{2x+7}\le4\)
<=> \(\sqrt{2x+7}\ge x-4\)(1)
ĐK: x \(\ge\)-7/2
+) Với x - 4 < 0 <=> x < 4 khi đó (1) <=> \(\sqrt{2x+7}\ge0>x-4\) luôn đúng
Đối chiếu đk: x\(\in\)[ -7/2; 4 )
+) Với x - 4 \(\ge\)0 <=> x \(\ge\)4
(1) <=> \(2x+7\ge x^2-8x+16\)
<=> \(x^2-10x+9\le0\)
<=> x\(\in\)[ 1; 9 ]
Đối chiếu đk: x \(\in\)[4; 9 ]
Kết hợp 2 trường hợp ta có: x \(\in\)[ -7/2 ; 9 ]
Vậy a = -7/2; b = 9 nên 2a + b = 2
\(3xy=x+y+1\ge3\sqrt[3]{xy}\Rightarrow xy\ge1\)
\(4xy=xy+x+y+1=x\left(y+1\right)+\left(y+1\right)=\left(x+1\right)\left(y+1\right)\)
\(P=\frac{1}{x\left(y+1\right)}+\frac{1}{y\left(x+1\right)}=\frac{2xy+x+y}{4\left(xy\right)^2}=\frac{5xy-1}{4\left(xy\right)^2}\)
Xét hiệu: \(P-1=\frac{5xy-1}{4x^2y^2}-1=\frac{\left(4xy-1\right)\left(1-xy\right)}{4x^2y^2}\le0\) với mọi \(xy\ge1\)
Vậy \(P\le1\)hay max P = 1.
Dẫu "=" xảy ra <=> x = y = 1.
Áp dụng BĐT Cauchy ta có: \(3xy\ge2\sqrt{xy}+1\Leftrightarrow xy\ge1\)
Áp dụng BĐT Cauchy ta có:
\(P=\frac{1}{x\left(y+1\right)}+\frac{1}{y\left(x+1\right)}=\frac{5xy-1}{xy\left(x+1\right)\left(y+1\right)}=\frac{5xy-1}{4\left(xy\right)^2}\), đặt t=\(\frac{1}{xy}\)
\(f\left(t\right)=\frac{5}{4}t-\frac{1}{4}t^2\)đồng biến trên (0;1] nên f(t) đạt GTLN tại t=1
Vậy GTKN của P=1 đạt được khi x=y=1