cho hình thang ABCD (AB//CD).Tia phân giác của góc A và góc D cắt nhau tại K .Tính góc AKD giúp e gấp với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Độ dài cạnh là \(\sqrt{64}=8\left(cm\right)\)
Chu vi hình vuông là 8x4=32(cm)
=>Chọn B
\(\dfrac{x}{9}-\dfrac{3}{y}=\dfrac{1}{18}\)
=>\(\dfrac{xy-27}{9y}=\dfrac{1}{18}\)
=>\(18\cdot\left(xy-27\right)=9y\)
=>2(xy-27)=y
=>2xy-y=54
=>y(2x-1)=54
mà x,y là các số tự nhiên
nên \(\left(2x-1;y\right)\in\left\{\left(1;54\right);\left(3;18\right);\left(9;6\right);\left(27;2\right)\right\}\)
=>\(\left(x;y\right)\in\left\{\left(1;54\right);\left(2;18\right);\left(5;6\right);\left(14;2\right)\right\}\)
=>A max=1+54=55
\(\dfrac{1}{4}=\dfrac{1}{2^2}< \dfrac{1}{1\cdot2}=1-\dfrac{1}{2}\)
\(\dfrac{1}{9}=\dfrac{1}{3^2}< \dfrac{1}{2\cdot3}=\dfrac{1}{2}-\dfrac{1}{3}\)
...
\(\dfrac{1}{100}=\dfrac{1}{10^2}< \dfrac{1}{9\cdot10}=\dfrac{1}{9}-\dfrac{1}{10}\)
Do đó: \(A=\dfrac{1}{4}+\dfrac{1}{9}+..+\dfrac{1}{100}< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{9}-\dfrac{1}{10}\)
=>\(A< 1-\dfrac{1}{10}=\dfrac{9}{10}\)
=>A<B
\(\left(7x+2\right)^{-1}=3^{-2}\)
=>\(\dfrac{1}{7x+2}=\dfrac{1}{3^2}=\dfrac{1}{9}\)
=>7x+2=9
=>7x=7
=>x=1
\(\dfrac{-7}{13}+2+\dfrac{6}{13}\\ =\left(\dfrac{-7}{13}+\dfrac{6}{13}\right)+2\\ =\dfrac{-1}{13}+\dfrac{26}{13}\\ =\dfrac{-1+26}{13}\\ =\dfrac{25}{13}\)
1: (2x-1)*x>0
TH1: \(\left\{{}\begin{matrix}2x-1>0\\x>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>\dfrac{1}{2}\\x>0\end{matrix}\right.\Leftrightarrow x>\dfrac{1}{2}\)
TH2: \(\left\{{}\begin{matrix}2x-1< 0\\x< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x< \dfrac{1}{2}\\x< 0\end{matrix}\right.\)
=>x<0
2:
ĐKXĐ: x<>1
\(\dfrac{x+3}{x-1}< 0\)
TH1: \(\left\{{}\begin{matrix}x+3>0\\x-1< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>-3\\x< 1\end{matrix}\right.\)
=>-3<x<1
TH2: \(\left\{{}\begin{matrix}x+3< 0\\x-1>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x< -3\\x>1\end{matrix}\right.\)
=>Loại
c:
ĐKXĐ: x<>0
\(\dfrac{x^2-2}{5x}< 0\)
TH1: \(\left\{{}\begin{matrix}x^2-2< 0\\5x>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x^2< 2\\x>0\end{matrix}\right.\Leftrightarrow0< x< \sqrt{2}\)
TH2: \(\left\{{}\begin{matrix}x^2-2>0\\5x< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x^2>2\\x< 0\end{matrix}\right.\Leftrightarrow-\sqrt{2}< x< 0\)
d: (x-3)(x+7)>0
TH1: \(\left\{{}\begin{matrix}x-3>0\\x+7>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>3\\x>-7\end{matrix}\right.\Leftrightarrow x>3\)
TH2: \(\left\{{}\begin{matrix}x-3< 0\\x+7< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< 3\\x< -7\end{matrix}\right.\)
=>x<-7
\(x^2=x^4\)
=>\(x^2\left(1-x^2\right)=0\)
=>\(\left[{}\begin{matrix}x^2=0\\1-x^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x^2=0\\x^2=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)
\(x^2=x^4\\ x^4-x^2=0\\ x^2\left(x^2-1\right)=0\)
TH1: `x^2=0`
`=> x=0`
TH2: `x^2-1=0`
`=>x^2=1^2`
`=>x=1` hoặc `x=-1`
Tuổi con là (28-8):(3-1)=20:2=10(tuổi)
Tuổi mẹ là 3x10+8=38(tuổi)
2 lần tuổi conlà:
28 - 8 = 20 (tuổi)
Tuổi con là:
20 : 2 = 10 (tuổi)
Tuổi mẹ là:
28 + 10 = 38 (tuổi)
ĐS: ...
Ta có: AB//CD
=>\(\widehat{BAD}+\widehat{ADC}=180^0\)
=>\(2\cdot\left(\widehat{KAD}+\widehat{KDA}\right)=180^0\)
=>\(\widehat{KAD}+\widehat{KDA}=90^0\)
=>ΔKAD vuông tại K
=>\(\widehat{AKD}=90^0\)