so sánh
a) (-1/2) 2 với (-1)2 / (2)2 b) (3/5) với (3)3 / (5)3
c) (2)2 x (2)8 với (2)16 : (2)0 d) (3/4)7 : (3/4)3 với (3/4)2
e) (0,5)6 : (0,5)2 với \([(0,5)^2]\)2
mọi người ấn đọc tiếp sẽ rõ câu hỏi hơn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: \(\widehat{xOz}+\widehat{yOz}=180^0\)(hai góc kề bù)
=>\(\widehat{yOz}+50^0=180^0\)
=>\(\widehat{yOz}=130^0\)
b: Sửa đề: \(\widehat{OKt}=130^0\)
Ta có: \(\widehat{tKO}+\widehat{xOK}=180^0\)
mà hai góc này là hai góc ở vị trí trong cùng phía
nên Kt//Ox
\(125>5^{n+1}>25\\ \Rightarrow5^3>5^{n+1}>5^2\\ \Rightarrow3>n+1>2\\ \Rightarrow3-1>n>2-1\\ \Rightarrow2>n>1\)
Mà giữa 2 và 3 không có số tự nhiên nào
=> Không có n thỏa mãn
\(c,125\ge5^{n+1}>25\\ =>5^3\ge5^{n+1}>5^2\\ =>3\ge n+1>2\\ =>3-1\ge n>2-1\\ =>2\ge n>1\)
Mà n là số tự nhiên
=> n = 2
\(d,2\cdot16\ge2^n>4\\ =>2\cdot2^4\ge2^n>2^2\\ =>2^{1+4}\ge2^n>2^2\\ =>2^5\ge2^n>2^2\\ =>5\ge n>2\)
Mà n là số tự nhiên
=> n ∈ {3; 4; 5}
a: Diện tích đáy là: \(S_{ABC}=\dfrac{1}{2}\cdot4\cdot10=20\left(cm^2\right)\)
Thể tích lăng trụ đứng là \(V=20\cdot8=160\left(cm^3\right)\)
b: Thể tích lưỡi rìu là \(160\cdot90\%=144\left(cm^3\right)=0,144\left(dm^3\right)\)
Khối lượng lưỡi rìu là:
\(0,144\cdot7,87=1,13328\left(kg\right)\)
Vì \(\widehat{xOy}\ne180^0\)
nên Ox không song song với Oy
Vì a//Ox
và Ox không song song với Oy
nên a luôn cắt Oy
Thể tích của nước khi chưa nghiêng thùng là:
\(xab\left(dm^3\right)\)
Diện tích đáy của hình lăng trụ tạo thành bởi nước khi nghiêng thùng là:
\(\dfrac{1}{2}\cdot\dfrac{3}{4}a\cdot8=3a\left(dm^2\right)\)
Thể tích của nước khi nghiêng thùng là:
\(3a\cdot b=3ab\left(dm^3\right)\)
Do thể tích nước không thay đổi nên ta có pt:
\(xab=3ab\\ =>x=\dfrac{3ab}{ab}\\ =>x=3\left(dm\right)\)
Vậy: ...
Ta có: \(\widehat{M}=\widehat{N}\)
=>AM//BN
Ta có: AM//BN
=>\(\widehat{A_1}+\widehat{B_1}=180^0\)
mà \(2\widehat{A_1}=3\cdot\widehat{B_1}\)
nên \(\widehat{B_1}=180^0\cdot\dfrac{2}{5}=72^0\)
Ta có: \(\widehat{B_1}+\widehat{B_2}=180^0\)(hai góc kề bù)
=>\(\widehat{B_2}+72^0=180^0\)
=>\(\widehat{B_2}=108^0\)
\(\widehat{B_3}=\widehat{B_1}\)(hai góc đối đỉnh)
mà \(\widehat{B_1}=72^0\)
nên \(\widehat{B_3}=72^0\)
a: \(\dfrac{\left(-1\right)^2}{2^2}=\dfrac{1}{4};\left(-\dfrac{1}{2}\right)^2=\dfrac{1}{4}\)
Do đó: \(\dfrac{\left(-1\right)^2}{2^2}=\left(-\dfrac{1}{2}\right)^2\)
b: \(\dfrac{3^3}{5^3}=\left(\dfrac{3}{5}\right)^3< \dfrac{3}{5}\)(do \(0< \dfrac{3}{5}< 1\))
d: \(\left(\dfrac{3}{4}\right)^7:\left(\dfrac{3}{4}\right)^3=\left(\dfrac{3}{4}\right)^4\)
Vì \(0< \dfrac{3}{4}< 1\)
nên \(\left(\dfrac{3}{4}\right)^4< \left(\dfrac{3}{4}\right)^2\)
=>\(\left(\dfrac{3}{4}\right)^7:\left(\dfrac{3}{4}\right)^3< \left(\dfrac{3}{4}\right)^2\)
e: \(\left(0,5\right)^6:\left(0,5\right)^2=\left(0,5\right)^{6-2}=\left(0,5\right)^4=\left(0,5\right)^{2\cdot2}=\left[\left(0,5\right)^2\right]^2\)
cíu với