K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(a)\) \(B=\frac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}:\frac{1}{\sqrt{a}-\sqrt{b}}=\frac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{ab}}=a-b\)

\(b)\) \(B=a-b=\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}\)\(\Rightarrow\)\(B^2=\left(\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}\right)^2=2+\sqrt{3}-2\sqrt{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}+2-\sqrt{3}\)

\(B^2=4-2\sqrt{4-3}=4-2=2\)\(\Rightarrow\)\(B=\sqrt{2}\) ( vì \(B>0\) ) 

... 

19 tháng 12 2018

cảm ơn nhe <3 :)) 

18 tháng 12 2018

trả lời:

2041

tôi kb vs og lâu rùi

hok tốt nhé

18 tháng 12 2018

trả lời:

2041

kb nhé

18 tháng 12 2018

Đặt \(|x-1|=z\ge0\)

Ta có hệ:\(\hept{\begin{cases}z+|y-5|=1\\z-y=-5\end{cases}}\)

\(-TH1:\)

Nếu \(y< 5\) ta có: \(\hept{\begin{cases}z-y=-4\\z-y=-5\end{cases}}\)

Hệ này vô nghiệm

\(-TH2:\)

Nếu \(y\ge5\) ta có:\(\hept{\begin{cases}z+y=6\\z-y=-5\end{cases}}\)

Giải hệ này ta có: \(\hept{\begin{cases}z=\frac{1}{2}\\y=\frac{11}{2}\end{cases}}\)

\(z=|x-1|=\frac{1}{2}\Rightarrow x-1=\pm\frac{1}{2}\)

Do đó: \(x=\frac{3}{2}\)hoặc\(x=\frac{1}{2}\)

Vậy hệ đã cho có hai nghiệm là \(\left(\frac{3}{2};\frac{11}{2}\right)\)\(\left(\frac{1}{2};\frac{11}{2}\right)\)

19 tháng 12 2018

\(M=\sqrt{3}xy+y^2=\frac{1}{2}\left(x^2+2\sqrt{3}xy+3y^2\right)-\frac{1}{2}x^2-\frac{1}{2}y^2\)

\(=\frac{1}{2}\left(x+\sqrt{3}y\right)^2-\frac{1}{2}\ge-\frac{1}{2}\).

Nên GTNN của M là \(-\frac{1}{2}\) đạt được khi  \(x=-\sqrt{3}y\Rightarrow x^2=3y^2\Rightarrow4y^2=1\Rightarrow y=\pm\frac{1}{2}\)

 +,Với \(y=\frac{1}{2}\Rightarrow x=-\frac{\sqrt{3}}{2}\)

+,Với \(y=-\frac{1}{2}\Rightarrow x=\frac{\sqrt{3}}{2}\)

Ta lại có:\(M=\sqrt{3}xy+y^2\le\frac{3x^2+y^2}{2}+y^2=\frac{3x^2+3y^2}{2}=\frac{3}{2}\)

Nên GTLN của M là \(\frac{3}{2}\) đạt được khi \(\sqrt{3}x=y\Rightarrow3x^2=y^2\Rightarrow4x^2=1\Rightarrow x=\pm\frac{1}{2}\)

 +,Với \(x=\frac{1}{2}\Rightarrow y=\frac{\sqrt{3}}{2}\)

 +,Với \(x=-\frac{1}{2}\Rightarrow y=-\frac{\sqrt{3}}{2}\)

19 tháng 12 2018

M=3xy+y2=21​(x2+23​xy+3y2)−21​x2−21​y2

=\frac{1}{2}\left(x+\sqrt{3}y\right)^2-\frac{1}{2}\ge-\frac{1}{2}=21​(x+3​y)2−21​≥−21​.

Nên GTNN của M là -\frac{1}{2}−21​ đạt được khi  x=-\sqrt{3}y\Rightarrow x^2=3y^2\Rightarrow4y^2=1\Rightarrow y=\pm\frac{1}{2}x=−3y⇒x2=3y2⇒4y2=1⇒y=±21​

 +,Với y=\frac{1}{2}\Rightarrow x=-\frac{\sqrt{3}}{2}y=21​⇒x=−23​​

+,Với y=-\frac{1}{2}\Rightarrow x=\frac{\sqrt{3}}{2}y=−21​⇒x=23​​

Ta lại có:M=\sqrt{3}xy+y^2\le\frac{3x^2+y^2}{2}+y^2=\frac{3x^2+3y^2}{2}=\frac{3}{2}M=3xy+y2≤23x2+y2​+y2=23x2+3y2​=23​

Nên GTLN của M là \frac{3}{2}23​ đạt được khi \sqrt{3}x=y\Rightarrow3x^2=y^2\Rightarrow4x^2=1\Rightarrow x=\pm\frac{1}{2}3x=y⇒3x2=y2⇒4x2=1⇒x=±21​

 +,Với x=\frac{1}{2}\Rightarrow y=\frac{\sqrt{3}}{2}x=21​⇒y=23​​

 +,Với x=-\frac{1}{2}\Rightarrow y=-\frac{\sqrt{3}}{2}x=−21​⇒y=−23​​

18 tháng 12 2018

\(y=\left(m-2\right)x+2\)(d1)

Thay m = 4 vào đồ thị hàm số (d1) ta được:

\(y=\left(4-2\right)x+2\)

\(\Rightarrow y=2x+2\)

Cho x = 0 => y = 2 => A(0 ; 3)

y = 0 => x = -1 => B(-1 ; 0)

Bạn tự vẽ hàm số nhé!

18 tháng 12 2018

A B C P Q O M E F K N

Dễ thấy: MF là đường trung bình của \(\Delta\)PQC => MF // PC => ^FMP = ^APQ (So le trong)

Do PQ là tiếp xúc với đường tròn (MEF) nên ^FMP = ^MEF (Cùng chắn cung MF lớn)

=> ^APQ = ^MEF. Tương tự: ^AQP = ^MFE => \(\Delta\)PAQ ~ \(\Delta\)EMF (g.g) => \(\frac{ME}{AP}=\frac{MF}{AQ}\)

Mà ME = BQ/2; MF = CP/2 => \(\frac{BQ}{AP}=\frac{CP}{AQ}\) (*)

Trên cạnh AB lấy điểm K, trên cạnh AC lấy điểm N sao cho AK=BQ; AN=CP, thế vào (*) => \(\frac{AK}{AP}=\frac{AN}{AQ}\)

=> \(\Delta\)AKP ~ \(\Delta\)ANQ (c.g.c) => ^AKP = ^ANQ => Tứ giác KPNQ nội tiếp 

Dễ dàng chứng minh: \(\Delta\)OAK = \(\Delta\)OBQ (c.g.c) => OK=OQ => O nằm trên trung trực KQ

Tương tự: OP=ON => O nằm trên trung trực của PN.

Từ đó: O là giao điểm 2 đường trung trực của KQ,PN. Lại có: Tứ giác KPNQ nội tiếp (cmt)

=> O là tâm đường tròn (KPNQ) => OP=OQ (đpcm).