K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 11 2019

Ta co:

\(x^2+y^2+\frac{2}{xy}\ge2xy+\frac{2}{xy}=2\left(xy+\frac{1}{xy}\right)\ge4\)

Dau '=' xay ra khi \(x=y=1\)hoac \(x=y=-1\)

27 tháng 11 2019

Áp dụng BĐT Cauchy cho 2 số không âm:

\(x^2+y^2\ge2\sqrt{x^2y^2}=2xy\)(Vì x,y cùng dấu)

và \(xy+\frac{1}{xy}\ge2\sqrt{\frac{xy}{xy}}=2\)(Vì x,y cùng dấu)

\(\Rightarrow x^2+y^2+\frac{2}{xy}\ge2xy+\frac{2}{xy}=2\left(xy+\frac{1}{xy}\right)\ge4\)(Vì \(xy+\frac{1}{xy}\ge2\left(cmt\right)\))

Vậy GTNN của \(x^2+y^2+\frac{2}{xy}\)là 4\(\Leftrightarrow\orbr{\begin{cases}x=y=1\\x=y=-1\end{cases}}\)

Ta có : 

\(a+b=1\Rightarrow\left(a+b\right)^2=1\)

Mà \(\left(a+b\right)^2=a^2+2ab+b^2\)

\(\Rightarrow a^2+2ab+b^2=1\left(1\right)\)

Ta lại có :

\(\left(a-b\right)^2\ge0\Leftrightarrow a^2-2ab+b^2\ge0\left(2\right)\)

Ta đi cộng vế ( 1 ) và vế ( 2 ) , ta được :

\(2\left(a^2+b^2\right)\ge1\Leftrightarrow a^2+b^2\ge\frac{1}{2}\)

Ta có :

\((a^2+b^2)^2=a^4+2a^2b^2+b^4=\frac{1}{4}\left(3\right)\)

 \(\left(a^2-b^2\right)^2\ge0\Leftrightarrow a^4-2a^2b^2+b^4\ge0\left(4\right)\)

Cộng tiếp đẳng thức ( 3 ); ( 4 ) , ta lại được :

\(2\left(a^4+b^4\right)\ge\frac{1}{4}\Rightarrow a^4+b^4\ge\frac{1}{8}\)

Vậy ..................

19 tháng 11 2019

Nhân tung tóe + rút gọn ta được: \(\Sigma_{cyc}a^3b^2+\Sigma_{cyc}ab^3\ge abc\left(ab+bc+ca+a+b+c\right)\)

\(\Leftrightarrow\)\(\Sigma\frac{a^2b}{c}+\Sigma\frac{a^2}{b}\ge ab+bc+ca+a+b+c\) (*) 

(*) đúng do \(\hept{\begin{cases}\frac{a^2b}{c}+bc\ge2ab\\\frac{a^2}{b}+b\ge2a\end{cases}}\Rightarrow\hept{\begin{cases}\Sigma\frac{a^2b}{c}\ge ab+bc+ca\\\Sigma\frac{a^2}{b}\ge a+b+c\end{cases}}\)

"=" \(\Leftrightarrow\)\(a=b=c\)

1 tháng 11 2019

a) \(A=\left(3x+2\right)^2-9x\left(x+1\right)\)

\(A=9x^2+12x+4-9x^2-9x\)

\(A=3x+4\)

1 tháng 11 2019

\(B=\left(2x-1\right)^2-2\left(2x-1\right)\left(5x-1\right)+\left(5x-1\right)^2\)

\(B=\left[2x-1-\left(5x-1\right)\right]^2\)

\(B=\left(2x-1-5x+1\right)^2\)

\(B=\left(-3x\right)^2\)

\(B=9x^2\)

Bài làm

Vì con vi rút của bệnh cúm rất đa dạng nên khi ta mắc bệnh cúm thì lần này cs thể mác con vi rút này nhưng hôm sau ta bị cúm lại mắc con vi rút khác vì thế cơ thể ta không thể ưng phó kịp thơi vs chúng nên chúng ta cs thể mắc bệnh cúm nhiều lần. Còn vs bệnh quai bị chỉ do một loại vi rút gây ra nên ta mắc một lần thì lần sau sẽ không mắc lại nx.

# Học tốt #

1 tháng 11 2019

Thanks!!!

1 tháng 11 2019

1) \(x^4-2x^3+3x^2-2x+1\)

\(=x^2\left(x^2-x+1\right)-x\left(x^2-x+1\right)+\left(x^2-x+1\right)\)

\(=\left(x^2-x+1\right)^2\)

2) \(x^4-4x^3+10x^2-12x+9\)

\(=x^2\left(x^2-2x+3\right)-2x\left(x^2-2x+3\right)+3\left(x^2-2x+3\right)\)

\(=\left(x^2-2x+3\right)^2\)

2 tháng 11 2019

Đề là khoảng cách từ giao điểm hai đường chéo đến cạnh bằng 12 cm. Em kiểm tra lại đề bài nhé!

A B C D 25 O a b 12

Đặt OA = a, OD =b

Áo dụng định lí Pitago cho tam giác vuông OAD.

Có: \(a^2+b^2=25^2\)

Diện tích OAD = \(\frac{1}{2}.a.b=\frac{1}{2}.12.25\)

=> \(a.b=300\)=> \(b=\frac{300}{a}\)

=> \(a^2+\frac{300^2}{a^2}=25^2\Leftrightarrow a^4-25^2a^2+300^2=0\Leftrightarrow\left(a^2-225\right)\left(b^2-400\right)=0\)

<=> \(\orbr{\begin{cases}a^2=225\\a^2=400\end{cases}}\Leftrightarrow\orbr{\begin{cases}a=15\Rightarrow b=20\\a=20\Rightarrow b=15\end{cases}}\)

=> Đường chéo của hình thoi là: 15.2 =30 cm và 20 . 2 = 40 ( cm)

1 tháng 11 2019

Ta có:

\(a^2+b^2+c^2+d^2\)

\(=\left(\frac{a^2}{4}+b^2\right)+\left(\frac{a^2}{4}+c^2\right)+\left(\frac{a^2}{4}+d^2\right)\)

Lại có: \(\left(\frac{a}{2}-b\right)^2\ge0\Leftrightarrow\frac{a^2}{4}-ab+b^2\ge0\Leftrightarrow\frac{a^2}{4}+b^2\ge ab\)

Tương tự ta có:

\(\frac{a^2}{4}+c^2\ge ac\)

\(\frac{a^2}{4}+d^2\ge ad\)

\(\Rightarrow\left(\frac{a^2}{4}+b^2\right)+\left(\frac{a^2}{4}+c^2\right)+\left(\frac{a^2}{4}+d^2\right)\ge ab+ac+ad\)

\(\Rightarrow a^2+b^2+c^2+d^2=a\left(b+c+d\right)\left(đpcm\right)\)

1 tháng 11 2019

Sửa lại kết luận là \(a^2+b^2+c^2+d^2\ge a\left(b+c+d\right)\)