\(|x-1|+|4-x|=3\)
(sử dụng bất đẳng thức
\(|a|+|b|\ge|a+b|\))
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mk chắc chắn 100% là 99m<9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999
Ta có : |x - 1| + |4 - x|
\(\ge\)|x - 1 + 4 - x| = |3| = 3
Dấu "=" xảy ra <=> (x - 1)(4 - x) \(\ge\)0
=> \(\hept{\begin{cases}x-1\ge0\\4-x\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\ge1\\x\le4\end{cases}\Rightarrow}1\le x\le4\left(tm\right)}\)
hoặc \(\hept{\begin{cases}x-1\le0\\4-x\le0\end{cases}\Rightarrow\hept{\begin{cases}x\le1\\x\ge4\end{cases}\Rightarrow}x\in\varnothing}\)
Vậy\(1\le x\le4\)thì x thỏa mãn bài toán