Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 8:
\(1)\left(x+y\right)^2-\left(x-y\right)^2\\ =\left(x^2+2xy+y^2\right)-\left(x^2-2xy+y^2\right)\\ =x^2+2xy+y^2-x^2+2xy-y^2\\ =4xy\\ 2)\left(2x+3\right)^2-3x\left(2x+1\right)\\ =\left(4x^2+12x+9\right)-\left(6x^2+3x\right)\\ =4x^2+12x+9-6x^2-3x\\ =-2x^2+9x+9\\ 3)\left(4-2x\right)\left(4+2x\right)-4x\left(2x+3\right)\\ =\left[4^2-\left(2x\right)^2\right]-\left(8x^2+12x\right)\\ =16-4x^2-8x^2-12x\\ =16-12x^2-12x\\ 4)2\left(x+y\right)\left(x-y\right)+\left(x+y\right)^2-2x^2\\ =2\left(x^2-y^2\right)+\left(x^2+2xy+y^2\right)-2x^2\\ =2x^2-2y^2+x^2+2xy+y^2-2x^2\\ =x^2+2xy-y^2\)
Bài 8:
1: \(\left(x+y\right)^2-\left(x-y\right)^2\)
\(=\left(x+y+x-y\right)\left(x+y-x+y\right)\)
\(=2x\cdot2y=4xy\)
2: \(\left(2x+3\right)^2-3x\left(2x+1\right)\)
\(=4x^2+12x+9-6x^2-3x\)
\(=-2x^2+9x+9\)
3: \(\left(4-2x\right)\left(4+2x\right)-4x\left(2x+3\right)\)
\(=4^2-\left(2x\right)^2-8x^2-12x\)
\(=16-4x^2-8x^2-12x=-12x^2-12x+16\)
4: \(2\left(x+y\right)\left(x-y\right)+\left(x+y\right)^2-2x^2\)
\(=2\left(x^2-y^2\right)+x^2+2xy+y^2-2x^2\)
\(=2x^2-2y^2-x^2+2xy+y^2=x^2+2xy-y^2\)
5: \(\left(3x+4\right)\left(3x-2\right)-\left(3x+1\right)^2\)
\(=9x^2-6x+12x-8-9x^2-6x-1\)
=-9
6: \(4x\left(x-3\right)-\left(2x-1\right)\left(2x+1\right)\)
\(=4x^2-12x-\left(4x^2-1\right)\)
\(=4x^2-12x-4x^2+1=-12x+1\)
7: \(\dfrac{3}{2}x^2-\left(x-1\right)\left(x+1\right)+3x\)
\(=\dfrac{3}{2}x^2+3x-\left(x^2-1\right)\)
\(=\dfrac{3}{2}x^2+3x-x^2+1=\dfrac{1}{2}x^2+3x+1\)
8: \(2\left(5-x\right)\left(5+x\right)-\left(2x+3\right)^2-x\left(3x+2\right)\)
\(=2\left(25-x^2\right)-4x^2-12x-9-3x^2-2x\)
\(=2\left(25-x^2\right)-7x^2-14x-9\)
\(=50-2x^2-7x^2-14x-9=-9x^2-14x+41\)
a; a - b = 6 và \(\overline{4a7}\) + \(\overline{1b5}\) ⋮ 9
Để \(\overline{4a7}\) + \(\overline{1b5}\) ⋮ 9 ⇔ 4 + a + 7 + 1 + b + 5 ⋮ 9
⇒(4 + 7 + 1 + 5) + a + b ⋮ 9
⇒ 17 + a + b ⋮ 9
⇒ 8 + a + b ⋮ 9
Vì a + b ≤ 18 ⇒ 8 + a + b ≤ 26 ⇒ 8 + a + b = 9; 18 (1)
a - b = 6 ⇒ a = 6 + b Thay a = 6 + b vào (1) ta có:
8 + 6 + b + b = 9; 18 ⇒ (8 + 6) + (b + b) = 9; 18
⇒ 14 + 2b = 9; 18
Lập bảng ta có:
14 + 2b | 9 | 18 |
b | -\(\dfrac{5}{2}\) | 2 |
a = 6 + b | 8 | |
a; b \(\in\) N; 0 ≤ a; b ≤ 9 | loại |
Theo bẳng trên ta có (a; b) = (8; 2)
b; a - b = 6 và \(\overline{7a5}\) + \(\overline{8b4}\) ⋮ 9
\(\overline{7a5}\) + \(\overline{8b4}\) ⋮ 9 ⇔ 7 + a + 5 + 8 + b + 4 ⋮ 9 ⇒ (7 + 5 + 8 + 4) + a + b⋮ 9
⇒ (12 + 8 + 4) + a + b ⋮ 9 ⇒ (20 + 4) + a + b ⋮ 9 ⇒ 24 + a + b ⋮ 9
⇒ 6 + a + b ⋮ 9 vì 0 ≤ a + b ≤ 18 ⇒ 6 ≤ 6 + a + b ≤ 24
⇒ 6 + a + b = 9; 18 (1)
a - b = 6 ⇒ a = 6 + b thay a = b + 6 vào (1) ta có:
6 + 6 + b + b = 9; 18 ⇒ (6 + 6) + (b + b) = 9; 18 ⇒ 12 +2b = 9; 18
Lập bảng ta có:
12 + 2b | 9 | 18 |
b | - \(\dfrac{3}{2}\) | 3 |
a = 6 + 3 | 9 | |
0 ≤ a; b ≤ 9; a; b \(\in\) N | Loại |
Theo bảng trên ta có:
(a; b) = (9; 3)
a; a - b = 6 và \(\overline{4a7}\) + \(\overline{1b5}\) ⋮ 9
Để \(\overline{4a7}\) + \(\overline{1b5}\) ⋮ 9 ⇔ 4 + a + 7 + 1 + b + 5 ⋮ 9
⇒(4 + 7 + 1 + 5) + a + b ⋮ 9
⇒ 17 + a + b ⋮ 9
⇒ 8 + a + b ⋮ 9
Vì a + b ≤ 18 ⇒ 8 + a + b ≤ 26 ⇒ 8 + a + b = 9; 18 (1)
a - b = 6 ⇒ a = 6 + b Thay a = 6 + b vào (1) ta có:
8 + 6 + b + b = 9; 18 ⇒ (8 + 6) + (b + b) = 9; 18
⇒ 14 + 2b = 9; 18
Lập bảng ta có:
14 + 2b | 9 | 18 |
b | -\(\dfrac{5}{2}\) | 2 |
a = 6 + b | 8 | |
a; b \(\in\) N; 0 ≤ a; b ≤ 9 | loại |
Theo bẳng trên ta có (a; b) = (8; 2)
b; a - b = 6 và \(\overline{7a5}\) + \(\overline{8b4}\) ⋮ 9
\(\overline{7a5}\) + \(\overline{8b4}\) ⋮ 9 ⇔ 7 + a + 5 + 8 + b + 4 ⋮ 9 ⇒ (7 + 5 + 8 + 4) + a + b⋮ 9
⇒ (12 + 8 + 4) + a + b ⋮ 9 ⇒ (20 + 4) + a + b ⋮ 9 ⇒ 24 + a + b ⋮ 9
⇒ 6 + a + b ⋮ 9 vì 0 ≤ a + b ≤ 18 ⇒ 6 ≤ 6 + a + b ≤ 24
⇒ 6 + a + b = 9; 18 (1)
a - b = 6 ⇒ a = 6 + b thay a = b + 6 vào (1) ta có:
6 + 6 + b + b = 9; 18 ⇒ (6 + 6) + (b + b) = 9; 18 ⇒ 12 +2b = 9; 18
Lập bảng ta có:
12 + 2b | 9 | 18 |
b | - \(\dfrac{3}{2}\) | 3 |
a = 6 + 3 | 9 | |
0 ≤ a; b ≤ 9; a; b \(\in\) N | Loại |
Theo bảng trên ta có:
(a; b) = (9; 3)
Số tiền lợi nhuận ban đầu là:
-4-2+3+7=10-6=4(triệu đồng)
Số tiền đã chi ra là:
\(9\cdot80000+5\cdot280000=2120000\left(đồng\right)=2,12\left(triệuđồng\right)\)
Số tiền còn lại là:
4-2,12=1,88(triệu đồng)
=>Chọn E
2:
\(AM=\dfrac{1}{3}\cdot AB=\dfrac{1}{3}\cdot48=16\left(cm\right)\)
\(AN=\dfrac{1}{2}\cdot AD=\dfrac{1}{2}\cdot36=18\left(cm\right)\)
ΔAMN vuông tại A
=>\(S_{AMN}=\dfrac{1}{2}\times AM\times AN=\dfrac{1}{2}\times16\times18=144\left(cm^2\right)\)
BM+AM=BA
=>BM+16=48
=>BM=32(cm)
AN+ND=AD
=>ND+18=36
=>ND=18(cm)
ΔNDC vuông tại D
=>\(S_{NDC}=\dfrac{1}{2}\times ND\times DC=\dfrac{1}{2}\times18\times48=432\left(cm^2\right)\)
ΔMBC vuông tại B
=>\(S_{MBC}=\dfrac{1}{2}\times BM\times BC=\dfrac{1}{2}\times32\times36=576\left(cm^2\right)\)
ABCD là hình chữ nhật
=>\(S_{ABCD}=AB\times AD=48\times36=1728\left(cm^2\right)\)
\(S_{ABCD}=S_{AMN}+S_{NDC}+S_{MBC}+S_{MNC}\)
=>\(S_{MNC}+144+432+576=1728\)
=>\(S_{MNC}=576\left(cm^2\right)\)
Ví dụ 3:
Giải:
Tỉ số số trang đã đọc và số trang chưa đọc là: \(\dfrac{1}{5}:\dfrac{1}{3}=\dfrac{3}{5}\)
Theo bài ra ta có sơ đồ:
Theo sơ đồ ta có:
Số trang chưa đọc là: 120: (5 + 3) x 5 = 75 (trang)
Số trang đã đọc là: 120 - 75 = 45 (trang)
Đáp số: Số trang chưa đọc là: 75 trang
Số trang đã đọc là: 45 trang
Bài 8: Giải:
Theo bài ra ta có sơ đồ:
Theo sơ đồ ta có:
Số tiền lớp 4A quyên góp được là:
98 000 : (5 - 3) x 5 = 245 000 (đồng)
Số tiền của lớp 4B quyên góp được là:
245 000 - 98 000 = 147 000 (đồng)
Đáp số:...
Bài 10:
\(\dfrac{17}{2}\times\dfrac{3}{5}+\dfrac{3}{5}\times\dfrac{1}{2}+\dfrac{3}{5}\\=\dfrac{17}{2}\times\dfrac{3}{5}+\dfrac{1}{2}\times\dfrac{3}{5}+\dfrac{3}{5}\times1\\ =\dfrac{3}{5}\times\left(\dfrac{17}{2}+\dfrac{1}{2}+1\right)\\ =\dfrac{3}{5}\times\left(9+1\right)\\ =\dfrac{3}{5}\times10\\ =3\times2\\ =6\)
11.
a)
\(A=\left(x+1\right)\left(x^2-x+1\right)-\left(x-1\right)\left(x^2+x+1\right)\\=\left(x+1\right)\left(x^2-x\cdot1+1^2\right)-\left(x-1\right)\left(x^2+x\cdot1+1^2\right)\\ =\left(x^3+1^3\right)-\left(x^3-1^3\right)\\ =x^3+1-x^3+1\\ =2\)
=> Giá trị của bt không phụ thuộc vào biến
b)
\(B=\left(2x+6\right)\left(4x^2-12x+36\right)-8x^3+10\\ =\left(2x+6\right)\left[\left(2x\right)^2-2x\cdot6+6^2\right]-8x^3+10\\ =\left[\left(2x\right)^3+6^3\right]-8x^3+10\\ =\left(8x^3+216\right)-8x^3+10\\ =8x^3+216-8x^3+10\\ =226\)
=> Giá trị của bt không phụ thuộc vào biến
6.
\(a)\left(x+1\right)^3=x^3+3\cdot x^2\cdot1+3\cdot x\cdot1^2+1^3=x^3+3x^2+3x+1\\ b)\left(2x+3\right)^3=\left(2x\right)^3+3\cdot\left(2x\right)^2\cdot3+3\cdot2x\cdot3^2+3^3=8x^3+36x^2+54x+27\\ c)\left(x^2+2\right)^3=\left(x^2\right)^3+3\cdot\left(x^2\right)^2\cdot2+3\cdot x^2\cdot2^2+2^3=x^6+6x^4+12x^2+8\\ d)\left(2x+5y\right)^3=\left(2x\right)^3+3\cdot\left(2x\right)^2\cdot5y+3\cdot2x\cdot\left(5y\right)^2+\left(5y\right)^3=8x^3+60x^2y+150xy^2+125y^3\\ e.\left(x+\dfrac{1}{2}\right)^3=x^3+3\cdot x^2\cdot\dfrac{1}{2}+3\cdot x\cdot\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3=x^3+\dfrac{3}{2}x^2+\dfrac{3}{4}x+\dfrac{1}{8}\\ g.\left(\dfrac{1}{2}x+y^2\right)=\left(\dfrac{1}{2}x\right)^3+3\cdot\left(\dfrac{1}{2}x\right)^2\cdot y^2+3\cdot\dfrac{1}{2}x\cdot\left(y^2\right)^2+\left(y^2\right)^3\\ =\dfrac{x^3}{8}+\dfrac{3}{4}x^2y^2+\dfrac{3}{2}xy^4+y^6\\ h.\left(x^2-2\right)^3=\left(x^2\right)^3-3\cdot\left(x^2\right)^2\cdot2+3\cdot x^2\cdot2^2-2^3=x^6-6x^4+12x^2-8\)
\(6,5\notin Z\\ 6,5\in Q\\ 2\dfrac{4}{7}\notin Q\\ 0\in Q\\ -3,5\notin N\)