K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2022

Ta có: \(A=\sqrt[3]{5\sqrt{2}+7}-\sqrt[3]{5\sqrt{2}-7}\)

\(\Rightarrow A^3=5\sqrt{2}+7-5\sqrt{2}+7-3\left(5\sqrt{2}+7\right)\left(5\sqrt{2}-7\right)\left(\sqrt[3]{5\sqrt{2}+7}-\sqrt[3]{5\sqrt{2}-7}\right)\)

\(=14-3\left(50-49\right)A\)

\(\Rightarrow A^3=14-3A\Leftrightarrow A^3+3A-14=0=\left(A-2\right)\left(A^2+2A+7\right)=0\)

\(\Leftrightarrow A-2=0\Leftrightarrow A=2\)

=> Đpcm

15 tháng 7 2022

a) Áp dụng hệ thức lượng vào tam giác vuông ABC, ta có: 

\(AB^2=BH.BC=BH\left(BH+HC\right)=3,6\left(3,6+6,4\right)=3,6.10=36\)

\(\Rightarrow AB=\sqrt{36}=6\)(cm)

\(AC^2=HC.BC=HC\left(BH+HC\right)=6,4\left(3,6+6,4\right)=6,4.10=64\)

\(\Rightarrow AC=\sqrt{64}=8\left(cm\right)\)

\(AH^2=HB.HC=3,6.6,4=23,04\)

\(\Rightarrow AH=\sqrt{23,04}=4,8\left(cm\right)\)

b) Xét tứ giác AEHF có 3 góc vuông: \(\widehat{EAF};\widehat{AEH};\widehat{HFA}\)

=> Tứ giác AEHF là hình chữ nhật

=> EF=AH=4,8(cm)

c) Áp dụng hệ thức lượng vào tam giác vuông AHB, ta có:

\(AH^2=AE=AB\)(1)

Áp dụng hệ thức lượng vào tam giác vuông AHC, ta có:

\(AH^2=AF.AC\left(2\right)\)

Từ (1) và (2) suy ra: AE.AB=AF.AC

d) Theo kết quả câu c: \(AE.AB=AF.AC\Rightarrow\dfrac{AE}{AF}=\dfrac{AC}{AB}\)

Xét \(\Delta AEF\) và \(\Delta ACB:\)

\(\widehat{EAF}=\widehat{BAC}=90^o\)

\(\dfrac{AE}{AF}=\dfrac{AC}{AB}\left(cmt\right)\)

\(\Rightarrow\Delta AEF~\Delta ACB\left(c-g-c\right)\)

NV
15 tháng 7 2022

\(a+b+c=a^3+b^3+c^3-3abc\)

\(\Leftrightarrow a+b+c=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

\(\Rightarrow a^2+b^2+c^2-ab-bc-ca=1\) (do \(a+b+c=1\)

\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=2\) (1)

Mặt khác:

\(a+b+c=1\Rightarrow a^2+b^2+c^2+2ab+2bc+2ca=1\) (2)

Cộng vế (1) và (2):

\(\Rightarrow a^2+b^2+c^2=1\)

\(\Rightarrow\left(a;b;c\right)=\left(1;0;0\right)\) và các bộ hoán vị của chúng

15 tháng 7 2022

Ta có: \(a^3+b^3+c^3-3abc=\left(a+b\right)^3+c^3-3abc-3ab\left(a+b\right)\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)

Mà \(a+b+c=1\)

\(\Rightarrow a^3+b^3+c^3-3abc=a^2+b^2+c^2-ab-bc-ca\)\(=1\)

\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=2\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-a\right)^2+\left(a-c\right)^2=2\)

Vì a, b, c nguyên nên: \(\left\{{}\begin{matrix}\left(a-b\right)^2=0\\\left(b-c\right)^2=1\\\left(c-a\right)^2=1\end{matrix}\right.\) và các hoán vị của nó

\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\\left[{}\begin{matrix}b-c=1\\b-c=-1\end{matrix}\right.\\\left[{}\begin{matrix}c-a=1\\c-a=-1\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a=b\\\left[{}\begin{matrix}b=1+c\\b=-1+c\end{matrix}\right.\\\left[{}\begin{matrix}c=1+a\\c=-1+a\end{matrix}\right.\end{matrix}\right.\)

Thay vô \(a+b+c=1\) để tìm a, b, c

(Chú ý lúc kết luận, ghi các nghiệm vừa tìm được và viết thêm cụm "và các hoán vị của nó")

14 tháng 7 2022

Ta xét: (a^5 - a) + (b^5 - b) + (c^5 - c)

Ta có: a^5 - a = a(a^4 - 1) = a(a² - 1)(a² + 1) = a(a - 1)(a + 1)(a² + 1) 
= a(a - 1)(a + 1)(a² - 4 + 5) 
= a(a - 1)(a + 1)[ (a² - 4) + 5) ] 
= a(a - 1)(a + 1)(a² - 4) + 5a(a - 1)(a + 1) 
= a(a - 1)(a + 1)(a - 2)(a + 2) + 5a(a - 1)(a + 1) 
= (a - 2)(a - 1)a(a + 1)(a + 2) + 5a(a - 1)(a + 1) 

Do (a - 2)(a - 1)a(a + 1)(a + 2) là tích của 5 số nguyên liên tiếp => (a - 2)(a - 1)a(a + 1)(a + 2) chia hết cho 2, 3, 5 và 5a(a - 1)(a + 1) chia hết cho 5 và 2, 3 hay chia hết cho 2*3*5=30 

=> (a - 2)(a - 1)a(a + 1)(a + 2) + 5a(a - 1)(a + 1) chia hết cho 30. 

=> a^5 - a chia hết cho 30 

=> (a^5 -a) + (b^5 -b) + (c^5 -c) = (a^5+b^5+c^5) -(a+b+c) chia hết cho 30 (*) 

Do (a+b+c) chia hết cho 30 

(*) => (a^5+b^5+c^5) chia hết cho 30

15 tháng 7 2022

Trả lời:

Ta thấy : a5−a=a(a4−1)=a(a2−1)(a2+1).

=a(a−1)(a+1)(a2−4+5)

=a(a−1)(a+1)(a2−4)+5a(a−1)(a+1)

=(a−2)(a−1)a(a+1)(a+2)+5a(a−1)(a+1)

Ta có :(a−2)(a−1)a(a+1)(a+2)là tích 5 số tự nhiên liên tiếp :

⇒(a−2)(a−1)a(a+1)(a+2)5và cũng 6( cũng là 3 số tự nhiên liên tiếp )

⇒(a−2)(a−1)a(a+1)(a+2)30(1)

Ta lại có : 55và (a−1)a(a+1)6

⇒5a(a−1)(a+1)30(2)

Từ ( 1 ) và ( 2 ) ⇒(a−2)(a−1)a(a+1)(a+2)+5a(a−1)(a+1)30

Hay a5−a30

Tương tự b5−bvà c5−ccũng chia hết cho 30 

⇒a5+b5+c5−(a+b+c)30

Mà a+b+c30

⇒a5+b5+c530

14 tháng 7 2022

Gọi \(a^2=x^2-4x+11\)

\(\Leftrightarrow a^2-\left(x^2-4x+11\right)=0\)

\(\Leftrightarrow a^2-\left(x^2-4x+4\right)-7=0\)

\(\Leftrightarrow a^2-\left(x-2\right)^2=7\)

\(\Leftrightarrow\left(a-x+2\right)\left(a+x-2\right)=7\)

... (Đoạn này thì tự làm nhaa)

15 tháng 7 2022

Đáp án:

x=5

Giải thích các bước giải:

D=x2−4x+11 là số chính phương

→x2−4x+11=k2(k∈N∗)

→(x2−4x+4)−k2=−7

→(x−2+k)(x−2−k)=−7(∗)

Do k∈N∗

nên x∈Z

⇒(∗) là phương trình ước số của −7

Ta có:

−7=(−1).7=1.(−7)=(−7).1=7.(−1)

Ta được:

[{x+k−2=−1x−k−2=7{x+k−2=1x−k−2=−7{x+k−2=−7x−k−2=1{x+k−2=7x−k−2=−1

⇔[{x=5k=−4(loại){x=−1k=2(loại){x=−1k=−4(loại){x=5k=4(nhận)

Vậy 

14 tháng 7 2022

ĐK: \(x\ge0\)

Ta có: \(A=\dfrac{\sqrt{x}+1}{2\sqrt{x}+1}\Leftrightarrow2A=\dfrac{2\sqrt{x}+2}{2\sqrt{x}+1}=\dfrac{2\sqrt{x}+1+1}{2\sqrt{x}+1}=\dfrac{1}{2\sqrt{x}+1}+1\)

Ta thấy vì: \(2\sqrt{x}\ge0\Leftrightarrow2\sqrt{x}+1\ge1\Leftrightarrow\dfrac{1}{2\sqrt{x}+1}\le1\)

\(\Rightarrow2A\le1+1=2\Leftrightarrow A\le1\)

Dấu ''='' xảy ra khi x = 0