Tìm tất cả các chữ số a,b sao cho số tự nhiên có dạng 2abb đều chia hết cho 2,3.5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 14:
1: \(A=x^2-x+3\)
\(=x^2-x+\dfrac{1}{4}+\dfrac{11}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{11}{4}>=\dfrac{11}{4}\forall x\)
Dấu '=' xảy ra khi x-1/2=0
=>\(x=\dfrac{1}{2}\)
2: \(B=x^2+x+1\)
\(=x^2+x+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}\forall x\)
Dấu '=' xảy ra khi \(x+\dfrac{1}{2}=0\)
=>\(x=-\dfrac{1}{2}\)
3: \(C=x^2-4x+1\)
\(=x^2-4x+4-3\)
\(=\left(x-2\right)^2-3>=-3\forall x\)
Dấu '=' xảy ra khi x-2=0
=>x=2
4: \(D=x^2-5x+7\)
\(=x^2-2\cdot x\cdot\dfrac{5}{2}+\dfrac{25}{4}+\dfrac{3}{4}\)
\(=\left(x-\dfrac{5}{2}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}\forall x\)
Dấu '=' xảy ra khi \(x-\dfrac{5}{2}=0\)
=>\(x=\dfrac{5}{2}\)
5: \(E=x^2+2x+2\)
\(=x^2+2x+1+1=\left(x+1\right)^2+1>=1\forall x\)
Dấu '=' xảy ra khi x+1=0
=>x=-1
6: \(F=x^2-3x+1\)
\(=x^2-2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}-\dfrac{5}{4}\)
\(=\left(x-\dfrac{3}{2}\right)^2-\dfrac{5}{4}>=-\dfrac{5}{4}\forall x\)
Dấu '=' xảy ra khi \(x-\dfrac{3}{2}=0\)
=>\(x=\dfrac{3}{2}\)
7: \(G=x^2+3x+3\)
\(=x^2+2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{3}{4}\)
\(=\left(x+\dfrac{3}{2}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}\forall x\)
Dấu '=' xảy ra khi x+3/2=0
=>x=-3/2
8: \(H=3x^2+3-5x\)
\(=3\left(x^2-\dfrac{5}{3}x+1\right)\)
\(=3\left(x^2-2\cdot x\cdot\dfrac{5}{6}+\dfrac{25}{36}+\dfrac{11}{36}\right)\)
\(=3\left(x-\dfrac{5}{6}\right)^2+\dfrac{11}{12}>=\dfrac{11}{12}\forall x\)
Dấu '=' xảy ra khi x-5/6=0
=>x=5/6
9: \(I=4x+2x^2+3\)
\(=2\left(x^2+2x+\dfrac{3}{2}\right)\)
\(=2\left(x^2+2x+1+\dfrac{1}{2}\right)\)
\(=2\left(x+1\right)^2+1>=1\forall x\)
Dấu '=' xảy ra khi x+1=0
=>x=-1
10: \(K=4x^2+3x+2\)
\(=\left(2x\right)^2+2\cdot2x\cdot\dfrac{3}{4}+\dfrac{9}{16}+\dfrac{23}{16}\)
\(=\left(2x+\dfrac{3}{4}\right)^2+\dfrac{23}{16}>=\dfrac{23}{16}\forall x\)
Dấu '=' xảy ra khi 2x+3/4=0
=>x=-3/8
11: M=(x-1)(x-3)+11
\(=x^2-4x+3+11=x^2-4x+14\)
\(=x^2-4x+4+10=\left(x-2\right)^2+10>=10\forall x\)
Dấu '=' xảy ra khi x-2=0
=>x=2
12: \(N=\left(x-3\right)^2+\left(x-2\right)^2\)
\(=x^2-6x+9+x^2-4x+4\)
\(=2x^2-10x+13\)
\(=2\left(x^2-5x+\dfrac{13}{2}\right)=2\left(x^2-5x+\dfrac{25}{4}+\dfrac{1}{4}\right)\)
\(=2\left(x-\dfrac{5}{2}\right)^2+\dfrac{1}{2}>=\dfrac{1}{2}\forall x\)
Dấu '=' xảy ra khi x-5/2=0
=>x=5/2
a: Xét ΔBAE và ΔBDE có
BA=BD
\(\widehat{ABE}=\widehat{DBE}\)
BE chung
Do đó: ΔBAE=ΔBDE
b: ΔBAE=ΔBDE
=>\(\widehat{BAE}=\widehat{BDE}\)
=>\(\widehat{BDE}=90^0\)
=>DE\(\perp\)BC tại D
XétΔBHF vuông tại H và ΔBHC vuông tại H có
BH chung
\(\widehat{HBF}=\widehat{HBC}\)
Do đó ΔBHF=ΔBHC
c: Xét ΔBFC có
BH,CA là các đường cao
BH cắt CA tại E
Do đó: E là trực tâm của ΔBFC
=>FE\(\perp\)BC
mà DE\(\perp\)BC
và FE,DE có điểm chung là E
nên F,E,D thẳng hàng
\(d.\dfrac{59-x}{41}+\dfrac{57-x}{43}=\dfrac{41-x}{59}+\dfrac{43-x}{57}\\ \left(\dfrac{59-x}{41}+1\right)+\left(\dfrac{57-x}{43}+1\right)=\left(\dfrac{41-x}{59}+1\right)+\left(\dfrac{43-x}{57}+1\right)\\ \dfrac{100-x}{41}+\dfrac{100-x}{43}=\dfrac{100-x}{59}+\dfrac{100-x}{57}\\ \left(100-x\right)\left(\dfrac{1}{41}+\dfrac{1}{43}-\dfrac{1}{59}-\dfrac{1}{57}\right)=0\\ 100-x=0\\ x=100\)
\(a.6,17\times0,01=0,0617\\ b.2,038:0,1=20,38\\ c.546\times0,001=0,546\\ d.0,72:0,001=720\\ e.4,126:0,01=412,6\\ f.578\times0,01=5,78\\ g.9,18:0,1=91,8\\ h.0,76\times0,1=0,076\\ i.4,376:0,001=4376\\ k.82,3\times0,001=0,0823\\ l.7,8\times0,1=0,78\\ m.13:0,1=130\)
bài 4:
\(C=\left(1+\dfrac{1}{1\cdot3}\right)\left(1+\dfrac{1}{2\cdot4}\right)\cdot...\cdot\left(1+\dfrac{1}{98\cdot100}\right)\)
\(=\left(1+\dfrac{1}{2^2-1}\right)\left(1+\dfrac{1}{3^2-1}\right)\cdot...\cdot\left(1+\dfrac{1}{99^2-1}\right)\)
\(=\dfrac{2^2}{2^2-1}\cdot\dfrac{3^2}{3^2-1}\cdot...\cdot\dfrac{99^2}{99^2-1}\)
\(=\dfrac{2\cdot3\cdot...\cdot99}{1\cdot2\cdot3\cdot...\cdot98}\cdot\dfrac{2\cdot3\cdot...\cdot99}{3\cdot4\cdot...\cdot100}=\dfrac{99}{1}\cdot\dfrac{2}{100}=\dfrac{99}{50}\)
Bài 5:
\(B=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{205}}{\dfrac{204}{1}+\dfrac{203}{2}+...+\dfrac{1}{204}}\)
\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{205}}{\left(1+\dfrac{203}{2}\right)+\left(1+\dfrac{202}{3}\right)+...+\left(\dfrac{1}{204}+1\right)+1}\)
\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{205}}{\dfrac{205}{2}+\dfrac{205}{3}+...+\dfrac{205}{205}}=\dfrac{1}{205}\)
a) 8 cm = 0,08 m
b) 0,52 m = 5,2 dm
c) 0,6 l = 600 ml
d) 84 g = 0,084 kg
e) 4 m2 = 0,0004 ha
f) 0,178 ha = 1780 m2
g) 5,8 dam2 = 580 m2
h) 956 cm2 = 9,56 dm2
Nhận thấy \(x_0=0\) không phải là nghiệm của phương trình đã cho.
Giả sử \(x_0< 0\), ta có \(x_0^3-x_0-1=0\)
\(\Leftrightarrow x_0\left(x_0^2-1\right)=1\)
\(\Leftrightarrow x_0\left(x_0-1\right)\left(x_0+1\right)=1\) (*)
Nếu \(x_0\le-1\) thì VT (*) \(\le0< 1=VP\), do đó (*) vô lý.
Xét \(-1< x_0< 0\) thì \(-1< x_0^3< 0\) và \(0< -x_0< 1\)
Do đó \(VT=x_0^3-x_0< 0+1=1=VP\) nên (*) vô lý.
Vậy điều giả sử ban đầu là sai \(\Rightarrow x_0>0\)
Đặt f(x)=x3-x-1
Vì \(f\left(x\right)=x^3-x-1\)
nên hàm số liên tục trên R
\(f\left(1\right)=1^3-1-1=-1;f\left(2\right)=2^3-2-1=5\)
Vì \(f\left(1\right)\cdot f\left(2\right)< 0\)
nên hàm số f(x)=x3-x-1 có nghiệm trên khoảng (1;2)
=>\(x_0\in\left(1;2\right)\)
=>\(x_0>0\)
Bài 1:
+ Nhân một số thập phân với 10; 100; 1000 ... em dịch dấu phẩy của số thập phân sang phải lần lượt là 1 hàng, 2 hàng, 3 hàng,...
Cụ thể:
a; 3,265 x 100 = 326,5 còn lại em tự làm
+ Chia một số tự nhiên cho 10; 100; 1000;... Ta dịch dấu phẩy của số thập phân sang trái lần lượt là 1 hàng, 2 hàng, 3 hàng,...
Cụ thể:
75,2 : 10 = 7,52
còn lại em tự làm
1.
a. 3,265 X 100 = 326,5
b. 5,4 x 1000 = 5400
c. 0,386 x 10 = 3,86
d. 0,02 x 1000 = 20
e. 75,2 : 10 = 7,52
f. 8127 : 100 = 81,27
g. 5,24 : 100 = 0,0524
h. 74,8 : 1000 = 0,0748
i. 52 : 100 = 0,52
k. 0,7 : 1000 = 0,0007
l. 7,8 x 0,1 = 0.78
m. 3,14 x 10 = 31,4
Bài 5
Ta có:
\(x^2-x-6=\left(x-3\right)\left(x+2\right)\) và đa thức chia bậc 2 nên dư là \(ax+b\)
Vậy \(f\left(x\right)=\left(x-3\right)\left(x+2\right)\left(x^2+4\right)+ax+b\)
Theo định lí Bezout, dư trong phép chia \(f\left(x\right)\) cho \(x-3\) là \(f\left(3\right)=21\) cho \(x+2\) là \(f\left(-2\right)=4\) nên ta có: \(\left\{{}\begin{matrix}3a+b=21\\-2a+b=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=5\\b=6\end{matrix}\right.\)
Đa thức cần tìm là \(\left(x+2\right)\left(x-3\right)\left(x^2+4\right)+5x+6=x^4-x^3-2x^2+x-18\)
Bài 4:
\(2n^2+6n-7⋮n-2\)
=>\(2n^2-4n+10n-20+13⋮n-2\)
=>\(13⋮n-2\)
=>\(n-2\in\left\{1;-1;13;-13\right\}\)
=>\(n\in\left\{3;1;15;-11\right\}\)
Ta có:
+) Vì \(\overline{2abb}⋮\) \(2\) và \(5\)nên:
\(b=0\)
+) Vì \(\overline{2abb}⋮3\) nên:
\(2+a+b+b=2+a+0+0=a+2⋮3\)
\(\Rightarrow\left(a+2\right)\in\left\{3,6,9\right\}\) (vì \(1\le a\le9\))
\(\Rightarrow a\in\left\{1,4,7\right\}\)
Vậy...