biết độ dài 3 cạnh của 1 tam giác tỉ lệ với 21,28,35. tính độ dài mỗi cạnh tam giác biết rằng 2 lần chu vi tam giác đó bằng 48 cm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Độ dài đường chéo HCN:
\(\sqrt{10^2+7^2}=\sqrt{100+49}=\sqrt{149}\approx12,21\left(cm\right)\)
4 - x = -(x - 4) = -(x + 1 - 5)
= -(x + 1) + 5
Để (4 - x) ⋮ (x + 1) thì 5 ⋮ (x + 1)
⇒ x + 1 ∈ Ư(5) = {-5; -1; 1; 5}
⇒ x ∈ {-6; -2; 0; 4}
Vì góc yOz và góc xOy là hai góc kề bù nên Oz và Ox cùng nằm trên một đường thẳng zx (1)
Tương tự ta có: Ot và Oy cùng nằm trên một đường thẳng
\(\widehat{xOt}\) và \(\widehat{yOz}\) là hai góc đối đỉnh
⇒ \(\widehat{O_2}\) = \(\dfrac{1}{2}\) \(\widehat{xOt}\) = \(\dfrac{1}{2}\) \(\widehat{yOz}\) = \(\widehat{O_5}\)
Mặt khác ta có: \(\widehat{O_2}\) + \(\widehat{O_1}\) + \(\widehat{O_6}\) = 1800 (gt)
⇒ \(\widehat{O_1}\) + \(\widehat{O_6}\) + \(\widehat{O_5}\) = 1800
⇒ Om và On cùng thuộc một đường thẳng mn (2)
Kết hợp (1) và (2) ta có: góc zOn và góc xOm là hai góc đối đỉnh
chu vi tam giâc là: 48 : 2 = 24(cm)
Độ dài ba cạnh lần lượt là: a; b; c (cm)
Theo bài ra ta có: \(\dfrac{a}{21}=\dfrac{b}{28}=\dfrac{c}{35}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{21}\) = \(\dfrac{b}{28}\) = \(\dfrac{c}{35}\) = \(\dfrac{a+b+c}{21+28+35}\) = \(\dfrac{24}{84}\) =\(\dfrac{2}{7}\)
a = 21 x \(\dfrac{2}{7}\) = 3
b = 28 x \(\dfrac{2}{7}\) = 8
\(c\) = 35 \(\times\) \(\dfrac{2}{7}\) = 10
Vậy độ dài ba cạnh lần lượt là: 3 cm; 8cm ; 10 cm