\(\left(\dfrac{2}{3}\right)^3-4.\left(-1\dfrac{3}{4}\right)^2+\left(-\dfrac{2}{3}\right)^3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do Oz là tia phân giác của góc xOy nên:
Oz sẽ cắt xOy thành hai góc bằng nhau
\(\Rightarrow\widehat{yOz}=\widehat{zOx}=\dfrac{\widehat{xOy}}{2}=\dfrac{30^o}{2}=15^o\)
Vậy: \(\widehat{yOz}=15^o\)
BĐT: \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)
\(\Rightarrow m=\left|x-1\right|+\left|x-5\right|\)
\(=\left|x-1\right|+\left|-\left(x-5\right)\right|\)
\(=\left|x-1\right|+\left|5-x\right|\)
Theo BĐT ta có: \(m=\left|x-1\right|+\left|5-x\right|\ge\left|x-1+5-x\right|=4\)
Vậy: \(m_{min}=4\)
giá chiếc pizza rau củ sau khi đã giảm là:
139000x(100%-10%)=125100 (đồng)
giá chiếc pizza thập cẩm sau khi đã giảm là:
289000x(100%-10%)=260100 (đồng)
giá tiền bác lan phải trả là:
(125100+260100)x(100%-5%)=365940 (đồng)
bác lan được trả lại số tiền là:
500000-365940=134060(đồng)
a) \(\left(\dfrac{1}{3}\right)^m=\dfrac{1}{81}\)
\(\Rightarrow\left(\dfrac{1}{3}\right)^m=\left(\dfrac{1}{3}\right)^4\)
\(\Rightarrow m=4\)
b) \(\dfrac{1}{9}\cdot27^n=3^n\)
\(\Rightarrow\dfrac{1}{3^2}\cdot\left(3^3\right)^n=3^n\)
\(\Rightarrow\dfrac{3^{3n}}{3^2}=3^n\)
\(\Rightarrow3^{3n-2}=3^n\)
\(\Rightarrow3n-2=n\)
\(\Rightarrow2n=2\)
\(\Rightarrow n=1\)
c) \(\dfrac{8}{2^n}=2\)
\(\Rightarrow\dfrac{2^3}{2^n}=2\)
\(\Rightarrow2^{3-n}=2^1\)
\(\Rightarrow3-n=1\)
\(\Rightarrow n=2\)
d) \(32^n\cdot16^{-n}=1024\)
\(\Rightarrow\left(2^5\right)^n\cdot\left(2^4\right)^{-n}=2^{10}\)
\(\Rightarrow2^{5n-4n}=2^{10}\)
\(\Rightarrow2^n=2^{10}\)
\(\Rightarrow n=10\)
e) \(3^{-1}\cdot3^n+5\cdot3^{n-1}=162\)
\(\Rightarrow3^{n-1}+5\cdot3^{n-1}=162\)
\(\Rightarrow3^{n-1}\cdot6=162\)
\(\Rightarrow3^{n-1}=27\)
\(\Rightarrow3^{n-1}=3^3\)
\(\Rightarrow n-1=3\)
\(n=4\)
f) \(\left(n-\dfrac{2}{3}\right)^3=\dfrac{1}{27}\)
\(\Rightarrow\left(n-\dfrac{2}{3}\right)^3=\left(\dfrac{1}{3}\right)^3\)
\(\Rightarrow n-\dfrac{2}{3}=\dfrac{1}{3}\)
\(\Rightarrow n=\dfrac{1}{3}+\dfrac{2}{3}\)
\(\Rightarrow n=1\)
Lời giải:
$a^2+ab=c^2+bc$
$\Rightarrow a(a+b)=c(b+c)\Rightarrow \frac{a+b}{c}=\frac{b+c}{a}(1)$
$a^2+ac=b^2+bc$
$\Rightarrow a(a+c)=b(b+c)\Rightarrow \frac{a+c}{b}=\frac{b+c}{a}(2)$
Từ $(1); (2)\Rightarrow \frac{a+b}{c}=\frac{b+c}{a}+\frac{c+a}{b}$
Áp dụng TCDTSBN:
$\frac{a+b}{c}=\frac{b+c}{a}+\frac{c+a}{b}=\frac{a+b+b+c+c+a}{c+a+b}=\frac{2(a+b+c)}{a+b+c}=2$
$\Rightarrow a+b=2c; b+c=2a; c+a=2b$
$\Rightarrow a+b-(b+c)=2c-2a$
$\Rightarrow a-c=2c-2a\Rightarrow 3a=3c\Rightarrow a=c$
$2b=c+a=a+a=2a\Rightarrow a=b$
Vậy $a=b=c$
Do đó:
$K=(1+\frac{a}{a})(1+\frac{a}{a})(1+\frac{a}{a})=(1+1)(1+1)(1+1)=8$
\(M=\dfrac{\left(8a-3b\right)\left(2a+b\right)-\left(2a-b\right)\left(2a-5b\right)}{4a^2-b^2}=\)
\(=\dfrac{16a^2+2ab-3b^2-4a^2+12ab-5b^2}{4a^2-b^2}=\)
\(=\dfrac{12a^2+14ab-8b^2}{4a^2-b^2}=\)
\(=\dfrac{4a^2+14ab-6b^2+8a^2-2b^2}{4a^2-b^2}=\)
\(=\dfrac{2\left(2a^2+7ab-3b^2\right)+2\left(4a^2-b^2\right)}{\left(4a^2-b^2\right)}=2\)
(\(\dfrac{2}{3}\))3 - 4.(-1\(\dfrac{3}{4}\))2 + (- \(\dfrac{2}{3}\))3
= (\(\dfrac{2}{3}\))3 + 4.( \(\dfrac{7}{4}\))2 - (\(\dfrac{2}{3}\))3
= [ (\(\dfrac{2}{3}\))3 - (\(\dfrac{2}{3}\))3 ] - \(\dfrac{49}{4}\)
=- \(\dfrac{49}{4}\)
- 49/4