K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
8 tháng 3 2022

Với mọi số thực \(a_i\) , ta có:

\(\left(a_1-a_2\right)^2+\left(a_2-a_3\right)^2+...+\left(a_n-a_1\right)^2\ge0\)

\(\Leftrightarrow2\left(a_1^2+a_2^2+a_3^2+...+a_n^2\right)\ge2\left(a_1a_2+a_2a_3+...+a_na_1\right)\)

\(\Leftrightarrow a_1^2+a_2^2+...+a_n^2\ge a_1a_2+a_2a_3+...+a_na_1\) (đpcm)

ừa ae

(a1 - a2)+ (a2 - a3)2 + ...+(ar - a1\(\ge\) 0

\( \Leftrightarrow \) 2 (a12 + a22 + ...+ an2 ) \(\ge\) 2 ( a1 a2 + a2 a3 +...+ an a1 )

\( \Leftrightarrow\) a12 + a22+...+ an2 \(\ge\)  a1 a2 + a2 a+...+ an a (ĐPCM)

NV
8 tháng 3 2022

Với mọi a;b;c;d;e ta có:

\(\left(a-2b\right)^2+\left(a-2c\right)^2+\left(a-2d\right)^2+\left(a-2e\right)^2\ge0\)

\(\Leftrightarrow4a^2+4b^2+4c^2+4d^2+4e^2\ge4ab+4ac+4ad+4ae\)

\(\Leftrightarrow a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d+e\right)\) (đpcm)

Dấu "=" xảy ra khi \(\dfrac{a}{2}=b=c=d=e\)

BĐT

\(\Leftrightarrow4a^2+4b^2+4c^2+4d^2+4e^2\ge4a\left(b+c+d+e\right)\)

\(\Leftrightarrow4a^2+4b^2+4c^2+4d^2+4e^2\ge4ab+4ac+4ad+4ae\)

\(\Leftrightarrow4a^2+4b^2+4c^2+4d^2+4e^2-\left(4ab+4ac+4ad+4ae\right)\ge0\)

\(\Leftrightarrow a^2-4ab+4b^2+a^2-4ac+4c^2+a^2-4ad+4d^2+a^2-4ae+4e^2\ge0\)

\(\Leftrightarrow\left(a-2b\right)^2+\left(a-2c\right)^2+\left(a-2d\right)^2+\left(a-2e\right)^2\ge0\), luôn đúng với \(\forall a,b,c,d,e\in R\)

Dấu "=" xảy ra khi và chỉ khi \(a=2b=2c=2d=2e\)

8 tháng 3 2022

a, Với x >= 0 ; x khác 16 

\(A=\left(\frac{x+5\sqrt{x}-27+\left(3-\sqrt{x}\right)\left(\sqrt{x}+4\right)}{x-16}\right):\frac{1}{\sqrt{x}+4}\)

\(=\left(\frac{x+5\sqrt{x}-27+3\sqrt{x}+12-x-4\sqrt{x}}{x-16}\right):\frac{1}{\sqrt{x}+4}\)

\(=\left(\frac{4\sqrt{x}-15}{x-16}\right):\frac{1}{\sqrt{x}+4}=\frac{4\sqrt{x}-15}{\sqrt{x}-4}\)

b, Ta có \(B=-2A\Rightarrow\sqrt{x}-4=-\frac{8\sqrt{x}-30}{\sqrt{x}-4}\)

\(\Leftrightarrow x-8\sqrt{x}+16=-8\sqrt{x}+30\Leftrightarrow x-14=0\Leftrightarrow x=14\left(tm\right)\)

8 tháng 3 2022

`(1+\frac{1}{x})^3.(1+x)^3=16`

`<=>(2+x+\frac{1}{x})^3=16`

`<=>2+x+\frac{1}{x}=\root{3}{16}`

`<=>x+\frac{1}{x}-(\root{3}{16}-2)=0`

`=>x^2-(\root{3}{16}-2)+1=0`

`<=>x^2-2.x.\frac{\root{3}{16}-2}{2}+\frac{\root{\frac{3}{2}}{16}-2}{4}+(1-\frac{\root{\frac{3}{2}}{16}-2}{4})=0`

`<=>(x-\frac{\root{3}{16}-2}{2})^2+(1-\frac{\root{\frac{3}{2}}{16}-2}{4})>0` (vô nghiệm)

Vậy phương trình vô nghiệm

NV
8 tháng 3 2022

ĐKXĐ: ...

\(\dfrac{\left(1+x\right)^3\left(1+x\right)\left(x^2-x+1\right)}{x^3}=16\)

\(\Leftrightarrow\left(\dfrac{\left(1+x\right)^2}{x}\right)^2\left(\dfrac{x^2-x+1}{x}\right)=16\)

\(\Leftrightarrow\left(x+\dfrac{1}{x}+2\right)^2\left(x+\dfrac{1}{x}-1\right)=16\)

Đặt \(x+\dfrac{1}{x}+2=t\)

\(\Rightarrow t^2\left(t-3\right)=16\Rightarrow t^3-3t^2-16=0\)

\(\Leftrightarrow\left(t-4\right)\left(t^2+t+4\right)=0\)

\(\Leftrightarrow t=4\Rightarrow x+\dfrac{1}{x}+2=4\)

\(\Rightarrow x^2-2x+1=0\)

\(\Rightarrow x=1\)

8 tháng 3 2022

a, Ta có ^AED = 900 ( góc nt chắc nửa đường tròn ) 

=> ^BEK = 900

Xét tứ giác DEKB có 

^KEB = ^BDK = 900

mà 2 góc này kề, cùng nhìn cạnh KB 

Vậy tứ giác DEKB là tứ giác nt 1 đường tròn 

b, Xét tứ giác AECM có 

^AEC + ^CMA = 1800

mà 2 góc này đối 

Vậy tứ giác AECM là tứ giác nt 1 đường tròn 

Xét tam giác BHM và tam giác BAE có 

^B _ chung 

^BHM = ^BAE (góc ngoài đỉnh H) 

Vậy tam giác BHM ~ tam giác BAE 

\(\dfrac{BH}{AB}=\dfrac{BM}{BE}\Rightarrow BE.BH=BM.AB\)(1) 

Xét tam giác ADB co ^ADB = 900 ( góc nt chắn nửa đường tròn)

đường cao DC 

ta có \(BD^2=BM.AB\)(2)

-bạn xem lại cái tích và bổ sung cái cm còn thiếu bên trên để mình nghĩ hướng giải nhé 

 

7 tháng 3 2022

ĐỪNG SPAM Ạ T_T

7 tháng 3 2022

🤦🏻‍♀️🤦🏻‍♀️🤦🏻‍♀️🤦🏻‍♀️

DD
8 tháng 3 2022

Giả sử điểm cố định mà \(\left(d\right)\)luôn đi qua là \(M\left(x_0,y_0\right)\).

Khi đó: 

\(mx_0+\left(2-3m\right)y_0+m-1=0\)đúng với mọi \(m\)

\(\Leftrightarrow m\left(x_0-3y_0+1\right)+2y_0-1=0\)đúng với mọi \(m\)

\(\Leftrightarrow\hept{\begin{cases}x_0-3y_0+1=0\\2y_0-1=0\end{cases}}\Leftrightarrow x_0=y_0=\frac{1}{2}\).

Vậy điểm cố định mà \(\left(d\right)\)luôn đi qua là \(M\left(\frac{1}{2},\frac{1}{2}\right)\).