Cho \(n\)số thực \(a_1,a_2,a_3,...,a_n\)\(\left(n\ge3\right)\). Chứng minh rằng:
\(a_1^2+a_2^2+a_3^2+...+a_n^2\ge a_1a_2+a_2a_3+a_3a_4+...+a_{n-1}a_n+a_na_1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với mọi a;b;c;d;e ta có:
\(\left(a-2b\right)^2+\left(a-2c\right)^2+\left(a-2d\right)^2+\left(a-2e\right)^2\ge0\)
\(\Leftrightarrow4a^2+4b^2+4c^2+4d^2+4e^2\ge4ab+4ac+4ad+4ae\)
\(\Leftrightarrow a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d+e\right)\) (đpcm)
Dấu "=" xảy ra khi \(\dfrac{a}{2}=b=c=d=e\)
BĐT
\(\Leftrightarrow4a^2+4b^2+4c^2+4d^2+4e^2\ge4a\left(b+c+d+e\right)\)
\(\Leftrightarrow4a^2+4b^2+4c^2+4d^2+4e^2\ge4ab+4ac+4ad+4ae\)
\(\Leftrightarrow4a^2+4b^2+4c^2+4d^2+4e^2-\left(4ab+4ac+4ad+4ae\right)\ge0\)
\(\Leftrightarrow a^2-4ab+4b^2+a^2-4ac+4c^2+a^2-4ad+4d^2+a^2-4ae+4e^2\ge0\)
\(\Leftrightarrow\left(a-2b\right)^2+\left(a-2c\right)^2+\left(a-2d\right)^2+\left(a-2e\right)^2\ge0\), luôn đúng với \(\forall a,b,c,d,e\in R\)
Dấu "=" xảy ra khi và chỉ khi \(a=2b=2c=2d=2e\)
a, Với x >= 0 ; x khác 16
\(A=\left(\frac{x+5\sqrt{x}-27+\left(3-\sqrt{x}\right)\left(\sqrt{x}+4\right)}{x-16}\right):\frac{1}{\sqrt{x}+4}\)
\(=\left(\frac{x+5\sqrt{x}-27+3\sqrt{x}+12-x-4\sqrt{x}}{x-16}\right):\frac{1}{\sqrt{x}+4}\)
\(=\left(\frac{4\sqrt{x}-15}{x-16}\right):\frac{1}{\sqrt{x}+4}=\frac{4\sqrt{x}-15}{\sqrt{x}-4}\)
b, Ta có \(B=-2A\Rightarrow\sqrt{x}-4=-\frac{8\sqrt{x}-30}{\sqrt{x}-4}\)
\(\Leftrightarrow x-8\sqrt{x}+16=-8\sqrt{x}+30\Leftrightarrow x-14=0\Leftrightarrow x=14\left(tm\right)\)
`(1+\frac{1}{x})^3.(1+x)^3=16`
`<=>(2+x+\frac{1}{x})^3=16`
`<=>2+x+\frac{1}{x}=\root{3}{16}`
`<=>x+\frac{1}{x}-(\root{3}{16}-2)=0`
`=>x^2-(\root{3}{16}-2)+1=0`
`<=>x^2-2.x.\frac{\root{3}{16}-2}{2}+\frac{\root{\frac{3}{2}}{16}-2}{4}+(1-\frac{\root{\frac{3}{2}}{16}-2}{4})=0`
`<=>(x-\frac{\root{3}{16}-2}{2})^2+(1-\frac{\root{\frac{3}{2}}{16}-2}{4})>0` (vô nghiệm)
Vậy phương trình vô nghiệm
ĐKXĐ: ...
\(\dfrac{\left(1+x\right)^3\left(1+x\right)\left(x^2-x+1\right)}{x^3}=16\)
\(\Leftrightarrow\left(\dfrac{\left(1+x\right)^2}{x}\right)^2\left(\dfrac{x^2-x+1}{x}\right)=16\)
\(\Leftrightarrow\left(x+\dfrac{1}{x}+2\right)^2\left(x+\dfrac{1}{x}-1\right)=16\)
Đặt \(x+\dfrac{1}{x}+2=t\)
\(\Rightarrow t^2\left(t-3\right)=16\Rightarrow t^3-3t^2-16=0\)
\(\Leftrightarrow\left(t-4\right)\left(t^2+t+4\right)=0\)
\(\Leftrightarrow t=4\Rightarrow x+\dfrac{1}{x}+2=4\)
\(\Rightarrow x^2-2x+1=0\)
\(\Rightarrow x=1\)
a, Ta có ^AED = 900 ( góc nt chắc nửa đường tròn )
=> ^BEK = 900
Xét tứ giác DEKB có
^KEB = ^BDK = 900
mà 2 góc này kề, cùng nhìn cạnh KB
Vậy tứ giác DEKB là tứ giác nt 1 đường tròn
b, Xét tứ giác AECM có
^AEC + ^CMA = 1800
mà 2 góc này đối
Vậy tứ giác AECM là tứ giác nt 1 đường tròn
Xét tam giác BHM và tam giác BAE có
^B _ chung
^BHM = ^BAE (góc ngoài đỉnh H)
Vậy tam giác BHM ~ tam giác BAE
\(\dfrac{BH}{AB}=\dfrac{BM}{BE}\Rightarrow BE.BH=BM.AB\)(1)
Xét tam giác ADB co ^ADB = 900 ( góc nt chắn nửa đường tròn)
đường cao DC
ta có \(BD^2=BM.AB\)(2)
-bạn xem lại cái tích và bổ sung cái cm còn thiếu bên trên để mình nghĩ hướng giải nhé
Giả sử điểm cố định mà \(\left(d\right)\)luôn đi qua là \(M\left(x_0,y_0\right)\).
Khi đó:
\(mx_0+\left(2-3m\right)y_0+m-1=0\)đúng với mọi \(m\)
\(\Leftrightarrow m\left(x_0-3y_0+1\right)+2y_0-1=0\)đúng với mọi \(m\)
\(\Leftrightarrow\hept{\begin{cases}x_0-3y_0+1=0\\2y_0-1=0\end{cases}}\Leftrightarrow x_0=y_0=\frac{1}{2}\).
Vậy điểm cố định mà \(\left(d\right)\)luôn đi qua là \(M\left(\frac{1}{2},\frac{1}{2}\right)\).
Với mọi số thực \(a_i\) , ta có:
\(\left(a_1-a_2\right)^2+\left(a_2-a_3\right)^2+...+\left(a_n-a_1\right)^2\ge0\)
\(\Leftrightarrow2\left(a_1^2+a_2^2+a_3^2+...+a_n^2\right)\ge2\left(a_1a_2+a_2a_3+...+a_na_1\right)\)
\(\Leftrightarrow a_1^2+a_2^2+...+a_n^2\ge a_1a_2+a_2a_3+...+a_na_1\) (đpcm)
ừa ae
(a1 - a2)2 + (a2 - a3)2 + ...+(ar - a1) \(\ge\) 0
\( \Leftrightarrow \) 2 (a12 + a22 + ...+ an2 ) \(\ge\) 2 ( a1 a2 + a2 a3 +...+ an a1 )
\( \Leftrightarrow\) a12 + a22+...+ an2 \(\ge\) a1 a2 + a2 a3 +...+ an a1 (ĐPCM)