K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3

A = \(\dfrac{2023}{2022^2+1}\) + \(\dfrac{2023}{2022^2+2}\) + ... + \(\dfrac{2023}{2022^2+3}\)+.... + \(\dfrac{2023}{2022^2+2022}\)

A = 2023.(\(\dfrac{1}{2022^2+1}\) + \(\dfrac{1}{2022^2+2}\) + ... + \(\dfrac{1}{2022^2+2022}\))

\(\dfrac{1}{2022^2+1}\) > \(\dfrac{1}{2022^2+2}\) > .... > \(\dfrac{1}{2022^2+2022}\)

Vì dãy phân số trên có 2022 phân số nên: 

A > 2023.  \(\dfrac{1}{2022^2+2022}\). 2022 

A > 2023. \(\dfrac{2022}{2022^2+2022}\)

A > 2023. \(\dfrac{2022}{2022.\left(2022+1\right)}\)

A > \(\dfrac{2023.2022}{2022.2023}\) = 1

A > 1 (đpcm)

 

6 tháng 3

Ta thầy 36 và 48 đều chia hết cho 12 nên ước chung lớn nhất có 3 số đã cho là 12

Các ước của 12 là: 1; 2; 3; 4; 6; 12 

Nên các số thỏa mãn là: 1; 2; 3; 4; 6; 12 

NV
6 tháng 3

\(A=1+6^2+6^4+...+6^{2022}+6^{2024}\)

\(6^2.A=6^2+6^4+6^6+...+6^{2024}+6^{2026}\)

\(\Rightarrow6^2A-A=6^{2026}-1\)

\(\Rightarrow35A=6^{2026}-1\)

\(\Rightarrow A=\dfrac{6^{2026}-1}{35}\)

NV
6 tháng 3

Nếu p lẻ \(\Rightarrow9p^3-23\ge9.3^3-23>2\)

\(9p^3\) lẻ và 23 lẻ \(\Rightarrow q=9p^3-23\) là số chẵn lớn hơn 2 \(\Rightarrow\) là hợp số (ktm)

\(\Rightarrow p\) chẵn \(\Rightarrow p=2\)

\(\Rightarrow q=9.2^3-23=49\) không phải số nguyên tố (ktm)

Vậy không tồn tại p, q nguyên tố thỏa mãn yêu cầu

6 tháng 3

viết nhầm thông cảm

 

6 tháng 3

2/9 - 7/8 : x = 1

7/8 : x = 2/9 - 1

7/8 : x = -7/9

x = 7/8 : (-7/9)

x = -9/8

7 tháng 3

100000

 

7 tháng 3

Số tiền bạn Bình còn lại so với tổng số tiền Bình có:

1 - 1/13 = 12/13

Số tiền bạn Bình có:

360000 : 12/13 = 390000 (đồng)

Số tiền Bình đã mua món quà:

390000 - 360000 = 30000 (đồng)

NV
6 tháng 3

\(\dfrac{a}{6}-\dfrac{2}{b+2}=\dfrac{3}{2}\)

\(\Leftrightarrow\dfrac{a\left(b+2\right)}{6\left(b+2\right)}-\dfrac{12}{6\left(b+2\right)}=\dfrac{9\left(b+2\right)}{6\left(b+2\right)}\)

\(\Rightarrow a\left(b+2\right)-12=9\left(b+2\right)\)

\(\Leftrightarrow a\left(b+2\right)-9\left(b+2\right)=12\)

\(\Leftrightarrow\left(a-9\right)\left(b+2\right)=12\)

Do b nguyên dương \(\Rightarrow b+2\ge3\) \(\Rightarrow b+2=\left\{3;4;6;12\right\}\)

Ta có bảng:

a-94321
b+234612
a13121110
b12410

Vậy \(\left(a;b\right)=\left(13;1\right);\left(12;2\right);\left(11;4\right);\left(10;10\right)\)

 

t z x' y' t' z' x y o

hình dưới nha

(x-4)(2y+1)=10

mà 2y+1 lẻ

nên \(\left(x-4\right)\left(2y+1\right)=10\cdot1=2\cdot5=\left(-10\right)\cdot\left(-1\right)=\left(-2\right)\cdot\left(-5\right)\)

=>\(\left(x-4;2y+1\right)\in\left\{\left(10;1\right);\left(2;5\right);\left(-10;-1\right);\left(-2;-5\right)\right\}\)

=>\(\left(x;y\right)\in\left\{\left(14;0\right);\left(6;2\right);\left(-6;-1\right);\left(2;-3\right)\right\}\)

NV
6 tháng 3

Đặt \(A=1+15^4+15^8+...+15^{96}+15^{100}\)

\(\Rightarrow15^4.A=15^4+15^8+...+15^{100}+15^{104}\)

\(\Rightarrow15^4.A-A=15^{104}-1\)

\(\Rightarrow A=\dfrac{15^{104}-1}{15^4-1}\)

\(B=1+15^2+...+15^{100}+15^{102}\)

\(\Rightarrow15^2B=15^2+15^4+...+15^{102}+15^{104}\)

\(\Rightarrow15^2.B-B=15^{104}-1\)

\(\Rightarrow B=\dfrac{15^{104}-1}{15^2-1}\)

\(\Rightarrow\dfrac{A}{B}=\dfrac{15^{104}-1}{15^4-1}.\dfrac{15^2-1}{15^{104}-1}=\dfrac{15^2-1}{15^4-1}=\dfrac{15^2-1}{\left(15^2-1\right)\left(15^2+1\right)}\)

\(=\dfrac{1}{15^2+1}=\dfrac{1}{226}\)