Tính:
B= 7/45+7/117+7/221+7/357+7/525
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
8)
a) Tam giác ABI và ACK có:
\(\widehat{AIB}=\widehat{AKC}=90^o;\widehat{BAC}\) chung
\(\Rightarrow\Delta ABI\sim\Delta ACK\left(g.g\right)\)
\(\Rightarrow\dfrac{AB}{AC}=\dfrac{AI}{AK}\)
\(\Rightarrow\dfrac{AK}{AC}=\dfrac{AI}{AB}\)
Tam giác AIK và ABC có:
\(\dfrac{AK}{AC}=\dfrac{AI}{AB};\widehat{BAC}\) chung
\(\Rightarrow\Delta AIK\sim\Delta ABC\left(c.g.c\right)\)
\(\Rightarrow\dfrac{S_{AIK}}{S_{ABC}}=\left(\dfrac{AI}{AB}\right)^2=cos^2A\)
\(\Rightarrow S_{AIK}=S_{ABC}.cos^2A\)
b) Có \(S_{BCIK}=S_{ABC}-S_{AIK}\)
\(=S_{ABC}-S_{ABC}.cos^2A\)
\(=S_{ABC}\left(1-cos^2A\right)\)
\(=S_{ABC}.sin^2A\)
c) \(S_{HIK}=S_{ABC}-S_{AKI}-S_{BHK}-S_{CHI}\)
\(=S_{ABC}-S_{ABC}.cos^2A-S_{ABC}.cos^2B-S_{ABC}.cos^2C\)
\(=S_{ABC}\left(1-cos^2A-cos^2B-cos^2C\right)\)
d) Có \(cotB=\dfrac{BH}{AH};cotC=\dfrac{CH}{AH}\)
\(\Rightarrow cotB+cotC=\dfrac{BH}{AH}+\dfrac{CH}{AH}=\dfrac{BC}{AH}\)
Nếu \(cotB+cotC\ge\dfrac{2}{3}\) thì \(\dfrac{BC}{AH}\ge\dfrac{2}{3}\Leftrightarrow BC\ge\dfrac{2}{3}AH\)
Nhưng điều này chưa chắc đã đúng tùy vào cách vẽ hình nên bạn cần bổ sung thêm điều kiện gì đó vào câu này nhé.
Giá tiền của 1 chiếc bút chì là: 15 000 : 3 = 5 000 (đồng)
Giá tiền của 1 chiếc bút máy là: 60 000 : 2 = 30 000 (đồng)
⇒ Chiếc bút máy đắt hơn và đắt hơn chiếc bút chì là:
30 000 - 5 000 = 25 000 (đồng)
giá tiền 1 chiếc bút chì là :
15000 : 3 = 5000 (đ)
giá tiền một chiếc bút máy là
60000 : 2 = 30000 (đ)
vậy giá tiền cuả chiếc bút máy nhiều hơn giá tiền của chiếc bút chì
30000 - 5000 = 25000 (đ)
#nguyenhoangthaotrang
Gọi thời gian làm riêng để hoàn thành công việc của đội 1 và 2 lần lượt là a, b (ngày)
Điều kiện : a; b > 0
Theo đề bài ta có:
\(\left\{{}\begin{matrix}\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{18}\\\dfrac{6}{a}+\dfrac{8}{b}=40\%=\dfrac{2}{5}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{a}=\dfrac{1}{45}\\\dfrac{1}{b}=\dfrac{1}{30}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=45\\b=30\end{matrix}\right.\) (thỏa mãn điều kiện)
Vậy...
Kẻ đường cao BD của tam giác ABC \(\left(D\in AC\right)\)
Khi đó \(AD=AB.cosA=c.cosA\)
\(\Rightarrow CD=AC-AD=b-c.cosA\)
Mặt khác, \(BD=BA.sinA=c\sqrt{1-cos^2A}\)
Tam giác BCD vuông tại D nên:
\(a^2=BC^2=DB^2+DC^2\)
\(=\left(b-c.cosA\right)^2+\left(c\sqrt{1-cos^2A}\right)^2\)
\(=b^2-2bc.cosA+c^2.cos^2A+c^2\left(1-cos^2A\right)\)
\(=b^2+c^2-2bc.cosA\)
Vậy đẳng thức được chứng minh.
Đây là toán nâng cao chuyên đề lập số theo điều kiện cho trước, cấu trúc thi chuyên, thi học sinh giỏi các cấp, thi violympic. Hôm nay Olm sẽ hướng dẫn các em giải chi tiết dạng này như sau:
Giải
Từ 205 đến 2025 các số chia hết cho 9 là các số thuộc dãy số sau:
207; 216; 225; ...; 2025
Dãy số trên là dãy số cách đều với khoảng cách là: 216 -207 = 9
Số số hạng của dãy số trên là: (2025 - 207) : 9 + 1 = 203 (số)
Từ 205 đến 2025 có số số hạng là:
(2025 - 205) : 1 + 1 = 1821 (số)
Từ 205 đến 2025 số các số không chia hết cho 9 là:
1821 - 203 = 1618 (số)
Đáp số:...
\(B=x^2+10x+20\\ =x^2+10x+25-5\\ =\left(x^2+10x+25\right)-5\\ =\left(x+5\right)^2-5\)
Ta có: \(\left(x+5\right)^2\ge0\forall x\)
\(\Rightarrow B=\left(x+5\right)^2-5\ge-5\forall x\)
Dấu "=" xảy ra: `x+5=0<=>x=-5`
Vậy: ...
\(B=\dfrac{7}{45}+\dfrac{7}{117}+\dfrac{7}{221}+\dfrac{7}{357}+\dfrac{7}{525}\)
\(B=\dfrac{7}{5\times9}+\dfrac{7}{9\times13}+\dfrac{7}{13\times17}+\dfrac{7}{17\times21}+\dfrac{7}{21\times25}\)
\(B=\dfrac{7}{4}\times\left(\dfrac{1}{5}-\dfrac{1}{9}\right)+\dfrac{7}{4}\times\left(\dfrac{1}{9}-\dfrac{1}{13}\right)+\dfrac{7}{4}\times\left(\dfrac{1}{13}-\dfrac{1}{17}\right)+\dfrac{7}{4}\times\left(\dfrac{1}{17}-\dfrac{1}{21}\right)+\dfrac{7}{4}\times\left(\dfrac{1}{21}-\dfrac{1}{25}\right)\)
\(B=\dfrac{7}{4}\times\left(\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{17}+\dfrac{1}{17}-\dfrac{1}{21}+\dfrac{1}{21}-\dfrac{1}{25}\right)\)
\(B=\dfrac{7}{4}\times\left(\dfrac{1}{5}-\dfrac{1}{25}\right)\)
\(B=\dfrac{7}{4}\times\dfrac{4}{25}\)
\(B=\dfrac{7}{25}\)
Vậy \(B=\dfrac{7}{25}\)