Cho \(a,b>0\) thỏa mãn \(\dfrac{1}{\sqrt{a}}+\dfrac{1}{\sqrt{b}}=2\). Tìm GTLN của biểu thức \(P=\dfrac{1}{\sqrt{ab}}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy: \(\frac{a^2}{b}-2a+b=\frac{\left(a-b\right)^2}{b}\)
\(\sqrt{a^2-ab+b^2}-\frac{a+b}{2}=\frac{a^2-ab+b^2-\frac{\left(a+b\right)^2}{b}}{\sqrt{a^2-ab+b^2}+\frac{a+b}{2}}=\frac{3\left(a-b\right)^2}{4\sqrt{a^2-ab+b^2}+2a+2b}\)
Bất đẳng thức tương đương với:
\(\frac{\left(a-b\right)^2}{b}+\frac{\left(b-c\right)^2}{c}+\frac{\left(c-a\right)^2}{c}\ge\)
\(\frac{3\left(a-b\right)^2}{4\sqrt{a^2+b^2-2ab}+2\left(a+b\right)}+\frac{3\left(b-c\right)^2}{4\sqrt{b^2+c^2-bc}+2\left(b+c\right)}+\frac{3\left(c-a\right)^2}{b\sqrt{c^2+a^2-ca}+2\left(c+a\right)}\)
\(\Leftrightarrow\left(a-b\right)^2\left[\frac{1}{b}-\frac{3}{4\sqrt{a^2+b^2-2ab}+2\left(a+b\right)}\right]+\left(b-c\right)^2\left[\frac{1}{c}-\frac{3}{4\sqrt{b^2+c^2-2bc}+2\left(b+c\right)}\right]\)
\(+\left(c-a\right)^2\left[\frac{1}{c}-\frac{3}{4\sqrt{c^2+a^2-ca}+2\left(c+a\right)}\right]\ge0\)
Ta đặt:
\(A=\frac{1}{b}-\frac{3}{4\sqrt{a^2+b^2-2ab}+2\left(a+b\right)}\)
\(B=\frac{1}{c}-\frac{3}{4\sqrt{b^2+c^2-2bc}+2\left(b+c\right)}\)
\(C=\frac{1}{c}-\frac{3}{4\sqrt{c^2+a^2-ca}+2\left(c+a\right)}\)
Chứng mình sẽ hoàn tất nếu ta chứng minh được A,B,C\(\ge0\), vậy:
\(A=\frac{1}{b}-\frac{3}{4\sqrt{a^2+b^2-2ab}+2\left(a+b\right)}=\frac{4\sqrt{a^2+b^2-2ab}+2a+b}{4\sqrt{a^2+b^2-2ab}+2\left(a+b\right)}\ge0\)
\(B=\frac{1}{c}-\frac{3}{4\sqrt{b^2+c^2-2bc}+2\left(b+c\right)}=\frac{4\sqrt{b^2+c^2-2bc}+2b+c}{4\sqrt{b^2+c^2-2bc}+2\left(b+c\right)}\ge0\)
\(C=\frac{1}{c}-\frac{3}{4\sqrt{c^2+a^2-ca}+2\left(c+a\right)}=\frac{4\sqrt{c^2+a^2-ca}+2c+a}{4\sqrt{c^2+a^2-ca}+2\left(c+a\right)}\ge0\)
Vậy biểu thức đã được chứng mình.
b) \(\hept{\begin{cases}x^2-4x+3=0\left(1\right)\\x^2+xy+y^2=3\left(2\right)\end{cases}}\)
Từ (1) <=> (x - 1)(x - 3) = 0 \(\Leftrightarrow\orbr{\begin{cases}x=1\\x=3\end{cases}}\)
Với x = 3 => (2) <=> 32 + 3y + y2 = 3
<=> y2 + 3y + 6 = 0
<=> \(\left(2y+3\right)^2=-15\)<=> PT vô nghiệm
Với x = 3 => (1) <=> 12 + y + y2 = 3
<=> (y - 1)(y + 2) = 0
<=> \(\orbr{\begin{cases}y=1\\y=-2\end{cases}}\)
=> Hệ có 2 nghiệm (x ; y) = (1;1) ; (1 ; - 2)
a, Thay m =-1 vào (d) ta được : \(y=-2x\)
Hoành độ giao điểm (P) ; (d) thỏa mãn pt
\(x^2+2x=0\Leftrightarrow x\left(x+2\right)=0\Leftrightarrow x=0;x=-2\)
Với x = 0 => y = 0
Với x = -2 => y = 4
Vậy với m = -1 thì (P) cắt (D) tại O(0;0) ; A(-2;4)
b, Hoành độ giao điểm (P) ; (d) thỏa mãn pt
\(x^2-2mx-m-1=0\)
\(\Delta'=m^2-\left(-m-1\right)=m^2+m+1>0\forall m\)
Vậy pt luôn có 2 nghiệm pb hay (P) cắt (d) tại 2 điểm pb
c, Theo Vi et \(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=-m-1\end{cases}}\)
Ta có : \(\left(x_1+x_2\right)^2-5x_1x_2\)Thay vào ta được
\(4m^2-5\left(-m-1\right)=4m^2+5m+5\)
\(=4m^2+\frac{2.2m.5}{4}+\frac{25}{16}-\frac{25}{16}+5=\left(2m+\frac{5}{4}\right)^2+\frac{55}{16}\ge\frac{55}{16}\)
Dấu ''='' xảy ra khi m = -5/88
Vậy với m = -5/88 thì GTNN của biểu thức trên là 55/16
Gọi số thứ nhất, thứ 2 và thứ 3 lần lượt là \(x,y,z\)
Theo đề bài, ta có \(\hept{\begin{cases}x+y+z=7068\left(\cdot\right)\\x+y=5179\left("\right)\\y+z=2796\left(~\right)\end{cases}}\)
Từ \(\left(\cdot\right)\)và \(\left( "\right)\)ta có \(\left(x+y+z\right)-\left(x+y\right)=7068-5179\)\(\Leftrightarrow z=1889\)
Từ \(\left(\cdot\right)\)và \(\left(~\right)\)ta có \(\left(x+y+z\right)-\left(y+z\right)=7068-2796\)\(\Leftrightarrow x=4272\)
Thay \(x=4272\)vào \(\left("\right)\), ta có \(4272+y=5179\)\(\Leftrightarrow y=907\)
Vậy 3 số đó lần lượt là \(4272;907\)và \(1889\)
Bài 2 :
Với \(x\ge0;x\ne1\)
\(=\left[\frac{\left(1-\sqrt{x}\right)\left(x+\sqrt{x}+1\right)}{1-\sqrt{x}}+\sqrt{x}\right]\left(\frac{1-\sqrt{x}}{1-x}\right)^2\)
\(=\left(x+2\sqrt{x}+1\right)\left(\frac{1}{\sqrt{x}+1}\right)^2=1\)
Vậy ta có đpcm
Bài 5 :
a, cm tứ giác nội tiếp đúng ko bạn ?
Ta có : ^ACB = 900 ( góc nt chắn nửa đường tròn )
^AEB = 900 ( góc nt chắn nửa đường tròn )
=< ^FCD = ^DCF = 900
Xét tứ giác FCDE có
^FCD + ^DCF = 1800
mà 2 góc này đối
Vậy tứ giác FCDE là tứ nt 1 đường tròn
b, Xét tam giác DAB và tam giác DCE có :
^ADB = ^CDE ( đối đỉnh )
^DAB = ^DCE ( góc nt chắn cung BE )
Vậy tam giác DAB ~ tam giác DCE ( g.g )
\(\frac{DA}{DC}=\frac{DB}{DE}\Rightarrow DA.DE=DB.DC\)
c, Xét tam giác OBC có OC = OB
nên tam giác OBC cân tại O => ^OCB = ^OBC (1)
mà ^CBA = ^CEA ( góc nt chắn cung CA ) (2)
Vì tứ giác DCEF là tứ giác nt 1 đường tròn (cma)
=> ^CFD = ^CED ( góc nt cùng chắn CD ) (3)
Từ (1) ; (2) ; (3) suy ra ^CFD = ^OCB
\(\left(x+2y\right)^2+\left(y-1\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x+2y=0\\y-1=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=-2\\y=1\end{cases}}\)
a, Xét tứ giác BCDE có :
^BEC = ^BDC = 900
mà 2 góc này kề nhau, cùng nhìn cạnh BC
Vậy tứ giác BCDE là tứ giác nt 1 đường tròn
b, Vì tứ giác BEDC là tứ giác nt 1 đường tròn
=> ^EDC = ^EDB ( góc nt cùng chắn cung EB )
mà ^E'D'B = ^E'CB ( góc nt cùng chắn cung E'B )
=> ^EDB = ^E'D'B
mà 2 góc này nằm ở vị trí đồng vị
=> ED // E'D'
c, Xét tam giacs OED và tam giác OBC có :
^EOD = ^BOC ( đối đỉnh )
^EDO = ^BCO ( góc nt cùng chắn cung BE )
Vậy tam giác OED ~ tam giác OBC ( g.g )
\(\Rightarrow\frac{OE}{OB}=\frac{OD}{OC}\)( cạnh tương ứng tỉ lệ ) => ED // BC ( Ta lét đảo )
Vì BD vuông AC => BD là đường cao
CE vuông AB => CE là đường cao
mà BD giao CE tại O => OA là đường cao thứ 3
=> OA vuông BC mà BC // EF ( cmt )
=> OA vuông DE
Ta có \(\dfrac{1}{\sqrt{a}}+\dfrac{1}{\sqrt{b}}=2\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{2}{\sqrt{ab}}=4\)
\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}=4-\dfrac{2}{\sqrt{ab}}\)
Khi đó P = \(\dfrac{1}{\sqrt{ab}}\left(4-\dfrac{2}{\sqrt{ab}}\right)=-2\left(\dfrac{1}{\sqrt{ab}}-1\right)^2+2\le2\)
Dấu "=" khi a = b = 1