K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
24 tháng 2

\(B=\dfrac{-\left(2x^2+3\right)+2x^2+x+5}{2x^2+3}=-1+\dfrac{2\left(x+\dfrac{1}{4}\right)^2+\dfrac{39}{8}}{2x^2+3}>-1\)

\(B=\dfrac{2x^2+3-2x^2+x-1}{2x^2+3}=1-\dfrac{2\left(x-\dfrac{1}{4}\right)^2+\dfrac{7}{8}}{2x^2+3}< 1\)

\(\Rightarrow-1< B< 1\)

Mà B nguyên \(\Rightarrow B=0\)

\(\Rightarrow x+2=0\Rightarrow x=-2\)

NV
24 tháng 2

\(P=\dfrac{3\left(x^2+1\right)}{3\left(x^2-x+1\right)}=\dfrac{2\left(x^2-x+1\right)+x^2+2x+1}{3\left(x^2-x+1\right)}=\dfrac{2}{3}+\dfrac{\left(x+1\right)^2}{3\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}}\ge\dfrac{2}{3}\)

\(P=\dfrac{2\left(x^2-x+1\right)-x^2+2x-1}{x^2-x+1}=2-\dfrac{\left(x-1\right)^2}{\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\le2\)

\(\Rightarrow\dfrac{2}{3}\le P\le2\)

Mà P nguyên \(\Rightarrow\left[{}\begin{matrix}P=1\\P=2\end{matrix}\right.\)

- Với \(P=1\Rightarrow\dfrac{x^2+1}{x^2-x+1}=1\Rightarrow x^2+1=x^2-x+1\)

\(\Rightarrow x=0\)

- Với \(P=2\Rightarrow\dfrac{x^2+1}{x^2-x+1}=2\Rightarrow x^2+x=2\left(x^2-x+1\right)\)

\(\Rightarrow x^2-2x+1=0\Rightarrow x=1\)

Vậy \(x=\left\{0;1\right\}\)

1: \(\dfrac{DM}{DE}=\dfrac{2}{5}\)

\(\dfrac{DN}{DF}=\dfrac{6}{15}=\dfrac{2}{5}\)

Do đó: \(\dfrac{DM}{DE}=\dfrac{DN}{DF}\)

2: Xét ΔDEF có \(\dfrac{DM}{DE}=\dfrac{DN}{DF}\)

nên MN//EF

23 tháng 2

Ta thấy: \(2024\equiv1\) (\(mod\) \(2023\))
\(20242024\equiv1909\) (\(mod\) \(2023\))
...
\(2024...2024:2023\) dư một số nào đó là một trong các số từ \(1\) đến \(2022\) (\(2023\) số).
* Xét \(2024\) số: \(2024;20242024;...;20242024...2024\) (Gồm \(2024\) bộ số \(2024\))
 + Lấy \(2024\) số trên chia cho \(2023\), ta có \(2024\) số dư từ \(0\) đến \(2022\).
\(\Rightarrow\) Tồn tại hai số chia cho \(2023\) có cùng số dư.
Giả sử hai số đó là \(a=2024...2024\) (\(i\) bộ số \(2024\)) và \(b=2024...2024\) (\(j\) bộ số \(2024\)\(\left(1\le i\le j\le2024\right)\)
\(a-b=2024...2024\cdot10^{4i}\) (\(j-i\) bộ số \(2024\)) chia hết cho \(2023\)
\(ƯCLN\left(10^{4i};2023\right)=1\)
\(\Rightarrow2024...2024\) (\(j-i\) bộ số \(2024\)) chia hết cho \(2023\) \(\left(đpcm\right)\).

NV
22 tháng 2

\(x^4-3x+2=x\left(x^3+ax^2+bx-2\right)-\left(x^3+ax^2+bx-2\right)\)

\(\Rightarrow x^4-3x+2=x^4+\left(a-1\right)x^3+\left(b-a\right)x^2-\left(b+2\right)x+2\)

Đồng nhất hệ số 2 vế ta được:

\(\left\{{}\begin{matrix}a-1=0\\b-a=0\\b+2=3\end{matrix}\right.\) \(\Rightarrow a=b=1\)

22 tháng 2

\(x^4-3x+2=\left(x-1\right)\left(x^3+ax^2+bx-2\right)\)
\(\Leftrightarrow\left(x-1\right)\left(x^3+x^2+x-2\right)=\left(x-1\right)\left(x^3+ax^2+bx-2\right)\)
\(\Rightarrow x^3+x^2+x-2=x^3+ax^2+bx-2\)
\(\Rightarrow1\cdot x^2+1\cdot x=ax^2+bx\)
\(\Rightarrow a=1\) và \(b=1\)

22 tháng 2

\(B=3x^2+3y^2+z^2+5xy-3yz-3xz-2x-2y+3\\\Rightarrow4A=12x^2+12y^2+4z^2+20xy-12yz-12xz-8x-8y+12\\\\=[(9x^2+18xy+9y^2)-(12xz+12yz)+4z^2]+[(2x^2+4xy+2y^2)-(8x+8y)+8]+(x^2-2xy+y^2)+4\\=[(3x+3y)^2-2\cdot(3x+3y)\cdot2z+(2z)^2]+[2(x^2+2xy+y^2)-8(x+y)+8]+(x-y)^2+4\\=(3x+3y-2z)^2+2[(x+y)^2-4(x+y)+4]+(x-y)^2+4\\=(3x+3y-2z)^2+2(x+y-2)^2+(x-y)^2+4\)

Ta thấy: \(\left\{{}\begin{matrix}\left(3x+3y-2z\right)^2\ge0\forall x,y,z\\2\left(x+y-2\right)^2\ge0\forall x,y\\\left(x-y\right)^2\ge0\forall x,y\end{matrix}\right.\)

\(\Rightarrow\left(3x+3y-2z\right)^2+2\left(x+y-2\right)^2+\left(x-y\right)^2+4\ge4\forall x,y,z\)

\(\Leftrightarrow4B\ge4\Leftrightarrow B\ge1\)

Dấu \("="\) xảy ra khi: \(\left\{{}\begin{matrix}3x+3y-2z=0\\x+y-2=0\\x-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=x\\2x=2\\2z=6x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y=1\\z=3\end{matrix}\right.\)

Vậy \(Min_B=1\) khi \(x=y=1;z=3\).

\(Toru\)

a: Xét ΔBAC có AM là phân giác

nên \(\dfrac{BM}{MC}=\dfrac{AB}{AC}\)

=>\(\dfrac{BM}{MC}=\dfrac{a}{b}\)

=>\(\dfrac{BM}{a}=\dfrac{MC}{b}\)

mà BM+MC=BC=a

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BM}{a}=\dfrac{MC}{b}=\dfrac{BM+MC}{a+b}=\dfrac{a}{a+b}\)

=>\(BM=\dfrac{a\cdot a}{a+b}=\dfrac{a^2}{a+b}\)

Xét ΔBCA có CN là phân giác

nên \(\dfrac{BN}{NA}=\dfrac{BC}{CA}\)

=>\(\dfrac{BN}{NA}=\dfrac{a}{b}\)

=>\(\dfrac{BN}{NA}=\dfrac{BM}{MC}\)

Xét ΔBAC có \(\dfrac{BN}{NA}=\dfrac{BM}{MC}\)

nên MN//AC

b: Xét ΔBAC có MN//AC

nên \(\dfrac{MN}{AC}=\dfrac{BM}{BC}\)

=>\(\dfrac{MN}{b}=\dfrac{a^2}{a+b}:a=\dfrac{a}{a+b}\)

=>\(MN=\dfrac{a\cdot b}{a+b}\)

a: loading...

b: Phương trình hoành độ giao điểm là:

2x-4=x+4

=>2x-x=4+4

=>x=8

Thay x=8 vào y=x+4, ta được:

y=8+4=12

Vậy: Q(8;12)

Tọa độ N là:

\(\left\{{}\begin{matrix}x=0\\y=2\cdot0-4=-4\end{matrix}\right.\)

Vậy: N(0;-4)

Tọa độ M là:

\(\left\{{}\begin{matrix}x=0\\y=0+4=4\end{matrix}\right.\)

Vậy: M(0;4)

M(0;4); N(0;-4); Q(8;12)

\(MN=\sqrt{\left(0-0\right)^2+\left(-4-4\right)^2}=8\)

\(MQ=\sqrt{\left(8-0\right)^2+\left(12-4\right)^2}=\sqrt{8^2+8^2}=8\sqrt{2}\)

\(NQ=\sqrt{\left(8-0\right)^2+\left(12+4\right)^2}=\sqrt{8^2+16^2}=8\sqrt{5}\)

Xét ΔMNQ có \(cosMNQ=\dfrac{NM^2+NQ^2-MQ^2}{2\cdot NM\cdot NQ}=\dfrac{256}{2\cdot8\cdot8\sqrt{5}}=\dfrac{2}{\sqrt{5}}\)

=>\(sinMNQ=\sqrt{1-\left(\dfrac{2}{\sqrt{5}}\right)^2}=\dfrac{1}{\sqrt{5}}\)

Diện tích ΔMNQ là:

\(S_{MNQ}=\dfrac{1}{2}\cdot NM\cdot NQ\cdot sinMNQ\)

\(=\dfrac{1}{2}\cdot\dfrac{1}{\sqrt{5}}\cdot8\cdot8\sqrt{5}=\dfrac{64}{2}=32\)

a: Để \(f\left(x\right)=\dfrac{2}{\left|x\right|-2}\) có nghĩa thì \(\left|x\right|-2\ne0\)

=>\(\left|x\right|\ne2\)

=>\(x\in R\backslash\left\{2;-2\right\}\)

b: Để \(f\left(x\right)=\dfrac{1}{2-x}+\dfrac{1}{x+3}\) có nghĩa thì \(\left\{{}\begin{matrix}2-x\ne0\\x+3\ne0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x\ne2\\x\ne-3\end{matrix}\right.\)

NV
21 tháng 2

\(E=2\left(x^2+4xy+4y^2\right)+3y^2-4x-2y+6\)

\(=2\left(x+2y\right)^2-4\left(x+2y\right)+2+3y^2+6y+3+1\)

\(=2\left(x+2y-1\right)^2+3\left(y+1\right)^2+1\ge1\)

\(E_{min}=1\) khi \(\left\{{}\begin{matrix}x+2y-1=0\\y+1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=3\\y=-1\end{matrix}\right.\)