Cho hai đa thức :
P(x) = \(x^5-3^5+7x^4-9x^3+x^3+x^2-\dfrac{1}{4}x\)
Q(x) = \(5x^4-x^5+x^2-2x^3+3x^2-\dfrac{1}{4}\)
Chứng tỏ rằng x= 0 là nghiệm của đa thức P(x) nhưng không là nghiệm của Q(x).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét đa thức \(P\left(x\right)=x^4+6x^3-11x^2+6x+1\)
Giả sử P(x) có nghiệm hữu tỉ \(x=\dfrac{p}{q}\left(p,q\inℤ,\left(p,q\right)=1\right)\) thì \(q,p|1\)
\(\Rightarrow\left(p,q\right)=\left(1,-1\right),\left(-1,1\right),\left(1,1\right),\left(-1,-1\right)\)
\(\Rightarrow x=\dfrac{p}{q}=\pm1\).
Thử lại, ta thấy \(P\left(\pm1\right)\ne0\) nên P(x) không có nghiệm hữu tỉ. Do đó P(x) không thể phân tích được thành tích của 1 đa thức bậc nhất và 1 đa thức bậc 3.
Khi đó đặt \(P\left(x\right)=\left(x^2+ax+b\right)\left(x^2+cx+d\right)\) với
\(\Rightarrow P\left(x\right)=x^4+cx^3+dx^2+ax^3+acx^2+adx+bx^2+bcx+bd\)
\(\Rightarrow P\left(x\right)=x^4+\left(a+c\right)x^3+\left(b+d+ac\right)x^2+\left(ad+bc\right)x+bd\)
Đồng nhất hệ số, thu được:
\(\left\{{}\begin{matrix}a+c=6\\b+d+ac=-11\\ad+bc=6\\bd=1\end{matrix}\right.\)
\(\Rightarrow b=d=\pm1\)
Nếu \(b=d=1\) thì \(\left\{{}\begin{matrix}a+c=6\\2+ac=-11\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a+c=6\\ac=-13\end{matrix}\right.\).
Khi đó \(a,c\) là 2 nghiệm của pt \(x^2-6x-13=0\) \(\Leftrightarrow\left[{}\begin{matrix}a=3+\sqrt{22}\\c=3-\sqrt{22}\end{matrix}\right.\) (loại)
Nếu \(b=d=-1\) thì \(-6=a+c=6\), vô lý.
Nên đa thức đã cho không thể phân tích được thành nhân tử nhé.
Gọi năng suất làm việc dự định của người đó là \(x\) (sản phẩm/giờ; \(x\in\mathbb{N}^*\))
Thời gian người đó hoàn thành công việc theo dự định là: \(\dfrac{14}{x}\) (giờ)
Năng suất làm việc của người đó thực tế là: \(x+3\) (sản phẩm/giờ)
Thời gian người đó hoàn thành công việc trên thực tế là: \(\dfrac{21}{x+3}\) (giờ)
Vì thời gian người đó hoàn thành công việc trên thực tế bằng thời gian người đó làm xong theo dự định nên ta có phương trình:
\(\dfrac{21}{x+3}=\dfrac{14}{x}\)
\(\Rightarrow21x=14\left(x+3\right)\)
\(\Leftrightarrow21x=14x+42\)
\(\Leftrightarrow7x=42\)
\(\Leftrightarrow x=6\) (tmđk)
Vậy năng suất làm việc của người đó theo dự định là 6 sản phẩm/giờ.
#$\mathtt{Toru}$
a) \(x^4-2x^3+2x^2-2x+a=\left(x^2-2x+1\right)\left(x^2+bx+c\right)\) (sửa đề)
\(\Leftrightarrow x^2\left(x^2-2x+1\right)+\left(x^2-2x+1\right)+a-1=\left(x^2-2x+1\right)\left(x^2+bx+c\right)\)
\(\Leftrightarrow\left(x^2-2x+1\right)\left(x^2+1\right)+a-1=\left(x^2-2x+1\right)\left(x^2+bx+c\right)\)
\(\Rightarrow\left\{{}\begin{matrix}a-1=0\\b=0\\c=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=c=1\\b=0\end{matrix}\right.\)
b) \(x^3+3x^2-x-3=\left(x-2\right)\left(x^2+bx+c\right)+a\)
\(\Leftrightarrow x^3-2x^2+5x^2-10x+9x-18+15=\left(x-2\right)\left(x^2+bx+c\right)+a\)
\(\Leftrightarrow x^2\left(x-2\right)+5x\left(x-2\right)+9\left(x-2\right)+15=\left(x-2\right)\left(x^2+bx+c\right)+a\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+5x+9\right)+15=\left(x-2\right)\left(x^2+bx+c\right)+a\)
\(\Rightarrow\left\{{}\begin{matrix}a=15\\b=5\\c=9\end{matrix}\right.\)
#$\mathtt{Toru}$
Gọi số tiền tiền lớp 5D thu được từ việc bán giấy vụn là \(x\) (đồng)
Ta có:
Trung bình cộng số tiền của bốn lớp là:
\(\dfrac{67000+84000+78000+x}{4}=\dfrac{229000}{4}+\dfrac{x}{4}=57250+\dfrac{x}{4}\)(đồng)
Số tiền lớp 5D thu được là:
\(x=57250+\dfrac{x}{4}+11000=68250+\dfrac{x}{4}\) (đồng)
Suy ra: \(x-\dfrac{x}{4}=68250\)
\(\dfrac{3}{4}x=68250\)
\(x=68250:\dfrac{3}{4}\)
\(x=91000\)
Vậy số tiền lớp 5D thu được là 91000 đồng
ĐKXĐ: \(x\ne\pm\dfrac{1}{2}\)
\(\dfrac{8x^2}{3\left(1-4x^2\right)}=\dfrac{2x}{6x-3}-\dfrac{1+8x}{4+8x}\)
\(\Leftrightarrow\dfrac{-8x^2}{3\left(2x-1\right)\left(2x+1\right)}=\dfrac{2x}{3\left(2x-1\right)}-\dfrac{1+8x}{4\left(2x+1\right)}\)
\(\Leftrightarrow\dfrac{-32x^2}{12\left(2x-1\right)\left(2x+1\right)}=\dfrac{8x\left(2x+1\right)}{12\left(2x-1\right)\left(2x+1\right)}-\dfrac{3\left(1+8x\right)\left(2x-1\right)}{12\left(2x-1\right)\left(2x+1\right)}\)
\(\Rightarrow-32x^2=16x^2+8x-3\left(16x^2-6x-1\right)\)
\(\Leftrightarrow-32x^2=16x^2+8x-48x^2+18x+3\)
\(\Leftrightarrow-32x^2=-32x^2+26x+3\)
\(\Leftrightarrow26x+3=0\)
\(\Leftrightarrow26x=-3\)
\(\Leftrightarrow x=-\dfrac{3}{26}\) (tmđk)
$Toru$
100 - (200 - 100) - 120 + 120 + 1
= 100 - 100 + (120 - 120) + 1
= 0 + 0 + 1
= 1
Ta có:
\(P\left(x\right)=x^5-3x^5+7x^4-9x^3+x^3+x^2-\dfrac{1}{4}x\\ =-2x^5+7x^4-8x^3+x^2-\dfrac{1}{4}x\\ =x\cdot\left(-2x^4+7x^3-8x^2+x-\dfrac{1}{4}\right)\)
Thay `x=0` vào P(x) ta có:
\(P\left(x\right)=0\cdot\left(2\cdot0^4+7\cdot0^3-8\cdot0^2+0-\dfrac{1}{4}\right)=0\)
=> `x=0` là nghiệm của P(x)
\(Q\left(x\right)=5x^4-x^5+x^2-2x^3+3x^2-\dfrac{1}{4}\\ =-x^5+5x^4-2x^3+4x^2-\dfrac{1}{4}\)
Thay `x=0` vào Q(x) ta có:
\(Q=-0^5+5\cdot0^4-2\cdot0^3+4\cdot0^2-\dfrac{1}{4}=-\dfrac{1}{4}\)
=> `x=0` không phải là nghiệm của Q(x)
Ta có:
P(0) = 0⁵ - 3⁵ + 7.0⁴ - 9.0³ + 0³ + 0² - 1/4 . 0
= -3⁵
= -243
Vậy x = 0 không là nghiệm của P(x)
Em xem lại đề nhé!