K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2019

( x + 0,7 )3 = -27

( x + 0,7 )3 = (-3)3 

=> x + 0,7 = -3

x = -3 -0,7

x = -3,7

Vậy x = -3,7

=))

14 tháng 9 2019

\(\left(x+0,7\right)^3=-27\)

\(\Rightarrow\left(x+0,7\right)^3=\left(-3\right)^3\)

\(x+0,7=\left(-3\right)\)

       \(x=\left(-3\right)-0,7\)

       \(x=-3,7\)

Vậy \(x=-3,7\)

Chúc bạn học tốt !!!

Bài làm

     \(\left(x-\frac{1}{4}\right)^2=\frac{4}{9}\)

=> \(\left(x-\frac{1}{4}\right)^2=\left(\frac{2}{3}\right)^2\)

=> \(x-\frac{1}{4}=\frac{2}{3}\)

=> \(x=\frac{2}{3}+\frac{1}{4}\)

=> \(x=\frac{8}{12}+\frac{3}{12}\)

=> \(x=\frac{11}{12}\)

Vậy \(x=\frac{11}{12}\)

# Học tốt #

C
14 tháng 9 2019

=> \(\left(x-\frac{1}{4}\right)^2=\left(\frac{2}{3}\right)^2\)

=> \(x-\frac{1}{4}=\frac{2}{3}\)

=>    \(x=\frac{2}{3}+\frac{1}{4}\)

=>    \(x=\frac{11}{12}\)

14 tháng 9 2019

Ta có:" \(\hept{\begin{cases}\frac{x}{y}=\frac{9}{7}\\\frac{y}{z}=\frac{7}{3}\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{9}=\frac{y}{7}\\\frac{y}{7}=\frac{z}{3}\end{cases}}\Rightarrow\frac{x}{9}=\frac{y}{7}=\frac{z}{3}}\)

Áp dụng tc của dãy tỉ số bằng nhau ta có:

\(\frac{x}{9}=\frac{y}{7}=\frac{z}{3}=\frac{x-y+z}{9-7+3}=\frac{-15}{5}=-3\)

\(\Rightarrow\hept{\begin{cases}x=-3.9=-27\\y=-3.7=-21\\z=-3.3=-9\end{cases}}\)

Vậy...

14 tháng 9 2019

                                                         Bài giải

x y O 140 0 z m n

a, Hai góc \(xOz\)\(yOz\) kề bù nên :

\(\widehat{xOz}+\widehat{yOz}=180^o\)

\(\widehat{xOz}+140^o=180^o\)

\(\widehat{xOz}=180^0-140^0\)

\(\widehat{xOz}=40^o\)

b, Om là tia phân giác của góc \(xOz\) \(\Rightarrow\text{ }\widehat{xOm}=\widehat{mOz}=\frac{1}{2}\cdot\widehat{xOz}=\frac{1}{2}\cdot40=20^0\)

On là tia phân giác của góc \(yOz\text{ }\Rightarrow\text{ }\widehat{yOn}=\widehat{nOz}=\frac{1}{2}\cdot\widehat{yOz}=\frac{1}{2}\cdot140^0=70^0\)

\(\Rightarrow\text{ }\widehat{xOm}+\widehat{mOz}+\widehat{yOn}+\widehat{nOz}=180^0\)

\(\widehat{mOz}+\widehat{nOz}=180^0-\widehat{xOm}-\widehat{yOn}\)

\(\widehat{mOz}+\widehat{nOz}=180^0-20^0-70\)

\(\widehat{mOz}+\widehat{nOz}=90^0\)

Vì hai góc \(mOz\)\(nOz\) kề nhau , cùng nằm trên một nửa mặt phẳng và \(\widehat{mOz}+\widehat{nOz}=90^0\)

\(\Rightarrow\text{ }\text{OM vuông góc với ON}\)

14 tháng 9 2019

a) Vì đ 0 nằm trên  đgt xy => xOz kề bù với yOz => xOz + yOz = 180 
         Thay số : xOz + 140 = 180
                       xOz           = 180 - 140 = 40

b) Vì Om là tia p giác của xOz => xOm = mOz = xOz / 2
   Vì On là tia p giác của zOy => zOn = nOy = zOy / 2
   Có:   xOz và yOz là 2 góc kề bù => xOz + yOz = 180 
         \(\Rightarrow\)  mOn = mOz + nOy 
                           = xOz/2 + zOy/2
                           = (xOz + zOy) /2   
                           =        180       /2
                           =             90
 Suy ra mOn là góc vuông \(\Rightarrow\)      Om vuông góc với On (Điều Phải Chứng Minh) 
chọn (k) đúng cho mình nha
 

14 tháng 9 2019

Katori Nomudo

Bạn đợi tí được không ? Mình đang nháp !

Đợi khoảng 45'p

14 tháng 9 2019

Ta có: \(\hept{\begin{cases}\left(3x-2y\right)^{2020}\ge0;\forall x,y,z\\\left(5y-3z\right)^{2000}\ge0;\forall x,y,z\\|2z-5x|\ge0;\forall x,y,z\end{cases}}\)

\(\Rightarrow\left(3x-2y\right)^{2020}+\left(5y-3z\right)^{2000}+|2z-5x|\ge0;\forall x,y,z\)

Do đó \(\left(3x-2y\right)^{2020}+\left(5y-3z\right)^{2000}+|2z-5x|=0\)

\(\Leftrightarrow\hept{\begin{cases}\left(3x-2y\right)^{2020}=0\\\left(5y-3z\right)^{2000}=0\\|2z-5x|=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}3x=2y\\5y=3z\\2z=5x\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{y}{3}=\frac{z}{5}\\\frac{z}{5}=\frac{x}{2}\end{cases}}\)

\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)

Áp dụng tc của dãy tỉ số bằng nhau ta có: 

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{x+y-z}{2+3-5}=\frac{5}{0}\)( vô lý )

14 tháng 9 2019

a) Xét \(\Delta AHB\)và \(\Delta AHD\), có

  +AH=BD(gt)

  +\(\widehat{BHA}=\widehat{DBH}\)(=900)

  +BH là cạnh chung

=> \(\Delta AHB=\Delta AHD\)(c.g.c)

b) Ta có \(\Delta AHB=\Delta AHD\)(cmt)

=>\(\widehat{ABC}=\widehat{BHD}\)( 2 góc tương ứng)

Mà \(\widehat{ABC}\)\(\widehat{BHD}\)là 2 góc so le trong

=> AB // HD ( dấu hiệu nhận biết 2 đường thẳng song song )

14 tháng 9 2019

B A D C H

14 tháng 9 2019

\(TH1:2-x=0\)

\(x=2\)

\(TH2:\frac{4}{5}-x=0\)

\(x=\frac{4}{5}\)

Vậy \(x\in\left\{\frac{4}{5};2\right\}\)

14 tháng 9 2019

\(\left(2-x\right).\left(\frac{4}{5}-x\right)=0\)

\(\Leftrightarrow\frac{8}{5}-2x-\frac{4}{5}x+x^2=0\)

\(\Leftrightarrow x^2-\frac{14}{5}x+\frac{8}{5}=0\)

\(\Leftrightarrow\left(x-\frac{7}{5}\right)^2-\frac{9}{25}=0\)

\(\Leftrightarrow\left(x-\frac{7}{5}\right)^2=\frac{9}{25}\)

\(\Rightarrow x-\frac{7}{5}=\frac{3}{5}\)hoặc \(x-\frac{7}{5}=-\frac{3}{5}\)

Th1:

\(x-\frac{7}{5}=\frac{3}{5}\)

\(\Leftrightarrow x=2\)

Th2:

\(x-\frac{7}{5}=-\frac{3}{5}\)

\(\Leftrightarrow x=\frac{4}{5}\)

Tk cho mn nha!!!!!!!!!!!!!!!!!!!!!!!!!!!!!