K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8

S A B C D M N P Q K

a/

Ta có

\(\dfrac{BM}{BC}=\dfrac{AN}{AD}\left(gt\right)\) => AM//MN//CD (Talet đảo) => MN//(SAB)

\(\dfrac{AN}{AD}=\dfrac{SP}{SD}\left(gt\right)\) => PN//SA (Talet đảo) => PN//(SAB)

=> (MNP)//(SAB) (Một mặt phẳng chứa 2 đường thẳng cắt nhau và cùng // với 1 mặt phẳng cho trước thì 2 mặt phẳng đó // với nhau)

Trong mp (SCD) từ P dựng đường thẳng // CD cắt SC tại Q

=> PQ//MN (cùng song song với CD

Mà \(P\in\left(MNP\right)\Rightarrow PQ\in\left(MNP\right)\Rightarrow Q\in\left(MNP\right)\)

đồng thời \(Q\in SC\)

=> Q là giao của SC với (MNP)

b/

Thiết diện của S.ABCD với (MNP) là tứ giác MNPQ

c/

Ta có

\(NP\left(SAD\right);K\in NP\Rightarrow K\in\left(SAD\right)\)

\(MQ\in\left(SBC\right);K\in MQ\Rightarrow K\in\left(SBC\right)\)

\(S\in\left(SAD\right);S\in\left(SBC\right)\)

=> SK là giao tuyến của 2 mặt phẳng (SAD) và (SBC)

Ta có AD//BC (cạnh đối hình vuông)=> AD//(SBC) và \(AD\in\left(SAD\right)\)

=> AD//SK(Một mp chứa 1 đường thẳng // với 1 mặt phẳng cho trước và 2 mặt phẳng cắt nhau thì đường thẳng đó // với giao tuyến)

Vậy khi M di động trên BC thì K thuộc nửa đường thẳng SK//AD

d/

ta có

SB là giao tuyến của (SAB) với (SBC)

MQ là giao tuyến của (MNP) với (SBC)

(MNP)//(SAB) (cmt)

=> SB//MQ (Hai mp song song với nhau bị cắt bởi mp thứ 3 thì 2 giao tuyến tạo thành song song với nhau)

 

 

 

1 tháng 8

Gọi thời gian để hai xe gặp nhau là `t` (giờ)

Điều kiện: ` t > 0`

- Nếu xe thứ nhất cách xe thứ hai 6km ở phía trước thì hai xe không bao giờ gặp nhau vì `20 km/h > 12 km/h`

- Nếu xe thứ nhất cách xe thứ hai 6km ở phía sau thì: 

Quãng đường mà xe thứ nhất đi đến thời điểm gặp nhau là:

`20` x `t (km)`

Quãng đường mà xe thứ hai đi đến thời điểm gặp nhau là:

`12` x `t (km)`

Mà xe thứ nhất các xe thứ hai `6km` từ lúc xuất phát nên: 

`20` x `t - 12` x `t = 6`

`=> (20 - 12)` x `t =6`

`=> 8` x `t = 6 `

`=> t = 6 : 8`

`=> t =` \(\dfrac{3}{4}\)  (Thỏa mãn)

Vậy sau \(\dfrac{3}{4}\) giờ kể từ khi 2 xe xuất phát thì chúng gặp nhau nếu xe một xuất phát cách xe hai `6km` ở phía sau

1 tháng 8

Cách tiểu học: (Vẫn xét xe thứ nhất xuất phát ở sau xe thứ 2 nhé)

Hiệu vận tốc 2 xe là: 

`20 - 12 = 8 (km`/`h)`

Do xe thứ nhất xuất phát cách xe thứ hai `6km` ở phía sau nên hiệu quãng đường của chúng cho đến khi gặp nhau là `6km`

Thời gian để 2 xe gặp nhau là: 

`6 : 8 =` \(\dfrac{3}{4}\) (giờ)

Đáp số: \(\dfrac{3}{4}\) giờ

a: Xét ΔSAB có M,N lần lượt là trung điểm của SA,SB

=>MN là đường trung bình của ΔSAB

=>MN//AB

mà AB//CD
nên MN//CD

b: Trong mp(ABCD), gọi O là giao điểm của AC và BD

Trong mp(SBD), gọi K là giao điểm của DN và SO

Chọn mp(SAC) có chứa SC

\(K=DN\cap SO\)

=>\(K\in\left(DAN\right)\cap\left(SAC\right)\)

=>\(\left(DAN\right)\cap\left(SAC\right)=AK\)

Gọi P là giao điểm của AK với SC

=>P là giao điểm của SC với (DAN)

 

2 tháng 8

\(\left(x+5\right)^2-4x^2\\=\left(x+5\right)^2-\left(2x\right)^2\\ =\left[\left(x+5\right)-2x\right]\left[\left(x+5\right)+2x\right]\\ =\left(x+5-2x\right)\left(x+5+2x\right)\\ =\left(-x+5\right)\left(3x+5\right)\)

loading...

Oa là phân giác của góc xOz

=>\(\widehat{zOa}=\dfrac{\widehat{xOz}}{2}\)

Ob là phân giác của góc zOy

=>\(\widehat{zOb}=\dfrac{\widehat{zOy}}{2}\)

\(\widehat{aOb}=\widehat{zOa}+\widehat{zOb}=\dfrac{1}{2}\left(\widehat{xOz}+\widehat{zOy}\right)\)

\(=\dfrac{1}{2}\cdot\widehat{xOy}=\dfrac{1}{2}\cdot150^0=75^0\)

a: Sau 3 giờ, xe máy đi được: 3x40=120(km)

Hiệu vận tốc hai xe là 60-40=20(km/h)

Hai xe gặp nhau sau khi ô tô đi được: 120:20=6(giờ)

b: Điểm gặp nhau cách A:

6x60=360(km)

1 tháng 8

Kẻ tia `Ot` là tia đối của tia `Ox`

=> \(\widehat{xOt}=180^o\)

Ta có: 

\(\widehat{yOt}=\widehat{xOt}-\widehat{xOy}=180^o-120^o=60^o\)

=> \(\widehat{tOz}=\widehat{zOy}-\widehat{yOt}=134^o-60^o=74^o\)

Mà \(\widehat{xOz};\widehat{zOt}\) là 2 góc kề bù

=> \(\widehat{zOx}+\widehat{zOt}=\widehat{xOt}\)

=> \(\widehat{xOz}=\widehat{xOt}-\widehat{tOz}=180^o-74^o=106^o\)

Vậy ...

1 tháng 8

Tổng chiều dài và rộng của hình chữ nhật là: 

`21,6 : 2 = 10,8 (dm)`

Đổi `80% =` \(\dfrac{4}{5}\)

Ta có sơ đồ: 

Chiều dài: (5 phần)

Chiều rộng: (4 phần)

Tổng số phần bằng nhau là: 

`5+4 = 9` (phần)

Giá trị 1 phần là: 

`10,8 : 9 = 1,2 (dm)`

Chiều dài hình chữ nhật: 

`1,2` x `5 = 6 (dm)`

Chiều rộng hình chữ nhật là: 

`10,8 - 6 = 4,8 (dm)`

Diện tích hình chữ nhật là: 

`6` x `4,8 = 28,8 (dm^2)`

Đáp số: `28,8 dm^2`