chứng minh biểu thức sau luôn dương với mọi biến
\(x^2-5x+10\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, \(x^4-2x^3+4x^3-8x^2+4x^2-8x+3x-6=0\)
\(\Leftrightarrow x^3\left(x-2\right)+4x^2\left(x-2\right)+4x\left(x-2\right)+3\left(x-2\right)=0\)
\(\Leftrightarrow\left(x^3+4x^2+4x+3\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left(x^3+3x^2+x^2+3x+x+3\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left(x^2+x+1>0\right)\left(x+3\right)\left(x-2\right)=0\Leftrightarrow x=-3;x=2\)
2, \(2\left(x^3-1\right)-7x\left(x-1\right)=0\)
\(\Leftrightarrow2\left(x-1\right)\left(x^2+x+1\right)-7x\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x^2-5x+2\right)=0\Leftrightarrow x=1;x=\dfrac{1}{2};x=2\)
`(-5x).(x-3).(2x-4)-(x-7).(x-3)+(5x-2).(3x-4)`
`=-10x^3 +50x^2-60x - x^2 +10x -21+15x^2 -26x +8`
`=-10x^3 + (50x^2 -x^2 + 15x^2) -(60x +10x - 26x) -(21+8)`
`=-10x^2 + 64x^2 -76x -13`
\(\left(x-3\right)\left(-10x^2+20x-x+7\right)+15x^2-20x-6x+8\)
\(=\left(x-3\right)\left(-10x^2+19x+7\right)+15x^2-26x+8\)
\(=-10x^3+19x^2-21+30x^2-57x-21+15x^2-26x+8\)
\(=-10x^3+64x^2-83x-34\)
13) \(\left(x-3\right)^2-16=\left(x-3-4\right)\left(x-3+4\right)=\left(x-7\right)\left(x+1\right)\)
\(1...1\) (2n chữ số)
\(=1+10+10^2+...+10^{2n-1}\)
\(=\dfrac{10^{2n}-1}{9}\)
\(4...4\) (n chữ số)
\(=4.\left(1+10+10^2+...+10^{n-1}\right)\)
\(=4.\dfrac{10^n-1}{9}\)
\(=\dfrac{4.10^n-4}{9}\)
Viết lại: \(D=\dfrac{10^{2n}-1}{9}+\dfrac{4.10^n-4}{9}+1=\dfrac{\left(10^n\right)^2-1+4.10^n-4+9}{9}=\dfrac{\left(10^n\right)^2+4.10^n+4}{9}=\left(\dfrac{10^n+2}{3}\right)^2\)
Vì \(\left\{{}\begin{matrix}10^nmod3=1\\2mod3=2\end{matrix}\right.\Rightarrow\left(10^n+2\right)⋮3\)
\(\Rightarrow\dfrac{10^n+2}{3}\) là số tự nhiên
Vậy D là số chính phương.
(x+y)2 + (x-y)2 = x2 +2xy +y2 + x2 - 2xy + y2 = 2x2 + 2y2
\(\left(x^2+x+1\right)\left(x^2-x+1\right)\left(x^4-x^2+1\right)\left(x^8-x^4+1\right)\\ =\left[\left(x^2+1\right)^2-x^2\right]\left(x^4-x^2+1\right)\left(x^8-x^4+1\right)\\ =\left(x^4+x^2+1\right)\left(x^4-x^2+1\right)\left(x^8-x^4+1\right)\\ =\left[\left(x^4+1\right)^2-x^4\right]\left(x^8-x^4+1\right)\\ =\left(x^8+x^4+1\right)\left(x^8-x^4+1\right)\\ =\left(x^8+1\right)^2-x^8\\ =x^{16}+x^8+1\)
\(x^2+2x-8\)
\(=x^2-2x+4x-8\)
\(=x\left(x-2\right)+4\left(x-2\right)\)
\(=\left(x-2\right)\left(x+4\right)\)
Ta có \(x^2-5x+10=\left(x^2-2.\dfrac{5}{2}x+\dfrac{25}{4}\right)+\dfrac{15}{4}=\left(x-\dfrac{5}{2}\right)^2+\dfrac{15}{4}>0\) với mọi \(x\)
\(x^2-5x+10=x^2-\dfrac{2.5}{2}x+\dfrac{25}{4}-\dfrac{25}{4}+10=\left(x-\dfrac{5}{2}\right)^2+\dfrac{15}{4}>0\)
Vậy bth luôn dương với mọi biến