K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2021

a, Vì SA là tiếp tuyến đường tròn (O) với A là tiếp điểm 

=> ^SAO = 900 hay tam giác SAO vuông tại A

Theo định lí Pytago tam giác SAO ta có : 

\(SA=\sqrt{SO^2-AO^2}=\sqrt{25-9}=4\)cm 

b, Xét tam giác SAO vuông tại A, AH là đường cao 

Áp dụng hệ thức : \(AH.SO=AS.AO\Rightarrow AH=\frac{AS.AO}{SO}=\frac{4.3}{5}=\frac{12}{5}\)cm 

Áp dụng hệ thức : \(AO^2=HO.SO\Rightarrow HO=\frac{AO^2}{SO}=\frac{9}{5}\)cm 

c, Ta có : SB = SA ( tc tiếp tuyến cắt nhau ) 

AO = BO = R 

Vậy SO là đường trung trực đoạn AB 

mà AH vuông SO => HB vuông SO 

=> A;H;B thẳng hàng 

14 tháng 12 2021

Bài 7 

\(A=\sqrt{12}+\frac{4}{\sqrt{3}+\sqrt{5}}=2\sqrt{3}+\frac{4\left(\sqrt{5}-\sqrt{3}\right)}{2}=2\sqrt{3}+2\sqrt{5}-2\sqrt{3}=2\sqrt{5}\)

a, \(B=\frac{\sqrt{x}}{\sqrt{x}-3}+\frac{2\sqrt{x}-24}{x-9}\)Với \(x\ge0;x\ne9\)

\(=\frac{\sqrt{x}\left(\sqrt{x}+3\right)+2\sqrt{x}-24}{x-9}=\frac{x+5\sqrt{x}-24}{x-9}=\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+8\right)}{x-9}=\frac{\sqrt{x}+8}{\sqrt{x}+3}\)

b, Ta có : \(\frac{\sqrt{x}+8}{\sqrt{x}+3}>2\Leftrightarrow\frac{\sqrt{x}+8}{\sqrt{x}+3}-2>0\)

\(\Leftrightarrow\frac{\sqrt{x}+8-2\sqrt{x}-6}{\sqrt{x}+3}>0\Rightarrow-\sqrt{x}-2>0\)

\(\Leftrightarrow\sqrt{x}+2< 0\)( vô lí do \(\sqrt{x}\ge0\Rightarrow\sqrt{x}+2\ge2>0\)

13 tháng 12 2021

Bò -;=[]/

14 tháng 12 2021

Ta có : AO = 3 cm; AM = 2 cm 

=> OM = 1 cm 

Theo định lí Pytago tam giác COM vuông tại M 

\(CM=\sqrt{CO^2-OM^2}=\sqrt{9-1}=2\sqrt{2}\)cm 

Theo định lí Pytago tam giác AMC vuông tại M 

\(AC=\sqrt{CM^2+AM^2}=\sqrt{4+8}=2\sqrt{3}\)cm 

14 tháng 12 2021

sửa đề d : y = ( 3m - 2 )x + m - 2 

a, Ta có : d // d3 <=> \(\hept{\begin{cases}3m-2=2\\m-2\ne1\end{cases}}\Leftrightarrow\hept{\begin{cases}3m=4\\m\ne3\end{cases}}\Leftrightarrow m=\frac{4}{3}\)

b, d vuông d1;d2 <=> \(3m-2=-1\Leftrightarrow m=\frac{1}{3}\)

c, Gọi hs d đi qua điểm M(x0;y0)

<=> \(y_0=\left(3m-2\right)x_0+m-2\)

\(\Leftrightarrow y_0=3mx_0-2x_0+m-2\Leftrightarrow y_0+2x_0+2=m\left(3x_0+1\right)\)

\(\Leftrightarrow\hept{\begin{cases}3x_0+1=0\\y_0+2x_0+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x_0=-\frac{1}{3}\\y_0-\frac{1}{3}.2+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x_0=-\frac{1}{3}\\y_0=-\frac{4}{3}\end{cases}}\)