K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2018

A B C D M F

Lấy F thuộc AB sao cho AF = AC

Xét tam giác AFM và AMC ta có:

   AM: chung

   AF = AC

   góc AFM = MAC

=> \(_{\Delta AFM=\Delta AMC}\) (c-g-c)

=> MF = MC

Trong tam giác MBF có: MB - MF < BF

Mà MF = MC => MB - MC < BF

Mà BF = AB - AF = AB - AC

Vậy AB - AC > MB - MC (đpcm)

2 tháng 7 2018

a)  \(x^2+3x+2\)

\(=\left(x^2+2x\right)+\left(x+2\right)\)

\(=x\left(x+2\right)+\left(x+2\right)\)

\(=\left(x+1\right)\left(x+2\right)\)

b)  \(x^2+5x+6\)

\(=\left(x^2+2x\right)+\left(3x+6\right)\)

\(=x\left(x+2\right)+3\left(x+2\right)\)

\(=\left(x+3\right)\left(x+2\right)\)

c)  \(x^2+5x+6\)

( giống câu b -_- )

d)  \(x^2+7x+12\)

\(=\left(x^2+4x\right)+\left(3x+12\right)\)

\(=x\left(x+4\right)+3\left(x+4\right)\)

\(=\left(x+3\right)\left(x+4\right)\)

2 tháng 7 2018

\(1,x^2+3x+2\)

\(=x^2+x+2x+2\)

\(=x\left(x+1\right)+2\left(x+1\right)\)

\(=\left(x+2\right)\left(x+1\right)\)

\(2,x^2+5x+6\)

\(=x^2+2x+3x+6\)

\(=x\left(x+2\right)+3\left(x+2\right)\)

\(=\left(x+3\right)\left(x+2\right)\)

\(4,x^2+7x+12\)

\(=x^2+3x+4x+12\)

\(=x\left(x+3\right)+4\left(x+3\right)\)

\(=\left(x+4\right)\left(x+3\right)\)

\(5,x^2-4x+3\)

\(=x^2-x-3x+3\)

\(=x\left(x-1\right)-3\left(x-1\right)\)

\(=\left(x-3\right)\left(x-1\right)\)

\(6,x^2+3x-4\)

\(=x^2-x+4x-4\)

\(=x\left(x-1\right)+4\left(x-1\right)\)

\(=\left(x+4\right)\left(x-1\right)\)

\(8,x^2-3x-10\)

\(=x^2-5x+2x-10\)

\(=x\left(x-5\right)+2\left(x-5\right)\)

\(=\left(x+2\right)\left(x-5\right)\)

2 tháng 7 2018

160+a2=5+b2

<=> b2-a2=155

<=> (b-a)(b+a)=155    (1).

Lại có b-a,b+a là các số nguyên, b-a<b+a      (2).

Từ (1),(2) ta có bảng:

b-a         1               5

b+a       155            31

a           77              13

Với a=77 thì c không nguyên (loại).

Với a=13 thì c=22 (t/m).

Vậy a=13.

Chúc bạn học tốt.

2 tháng 7 2018

\(A=x\left(x+2\right)+y\left(y-2\right)-2xy\)

\(\Leftrightarrow A=x^2+2x+y^2-2y-2xy\)

\(\Leftrightarrow A=\left(x-y\right)^2+2\left(x-y\right)\)

\(\Leftrightarrow A=10^2-2.10\)

\(\Leftrightarrow A=80\)

2 tháng 7 2018

\(A=x\left(x+2\right)+y\left(y-2\right)-2xy\)

\(=x^2+2x+y^2-2y-2xy\)

\(=\left(x^2-2xy+y^2\right)+\left(2x-2y\right)\)

\(=\left(x-y\right)^2+2\left(x-y\right)\)

\(=10^2+2.10=120\)

2 tháng 7 2018

1, \(x^2+4x-2xy-4y+y^2=\left(x^2-2xy+y^2\right)+\left(4x-4y\right)=\left(x-y\right)^2+4\left(x-y\right)=\left(x-y\right)\left(x-y+4\right)\)

2, \(x^3-2x^2+x=x\left(x^2-2x+1\right)=x\left(x-1\right)^2\)

3, \(2x^2+4x+2-2y^2=2\left(x^2-y^2\right)+2\left(2x+1\right)=2\left(x^2+2x+1-y^2\right)=2\left[\left(x+1\right)^2-y^2\right]=2\left(x+1-y\right)\left(x+1+y\right)\)

4, \(x^4-2x^2=x^4-2x^2+1-1=\left(x^2-1\right)^2-1=\left(x^2-1-1\right)\left(x^2-1+1\right)=\left(x^2-2\right)x^2\)

5, \(x^3+2x^2y+xy^2-9x=x\left(x^2+2xy+y^2-9\right)=x\left[\left(x+y\right)^2-3^2\right]=x\left(x+y-3\right)\left(x+y+3\right)\)

6, \(x^3-\frac{1}{4}x=x\left(x^2-\frac{1}{4}\right)=x\left(x-\frac{1}{2}\right)\left(x+\frac{1}{2}\right)\)

7, \(2x-2y-x^2+2xy-y^2=\left(2x-2y\right)-\left(x^2-2xy+y^2\right)=2\left(x-y\right)-\left(x-y\right)^2=\left(x-y\right)\left(2-x+y\right)\)

8, \(\left(2x+3\right)^2-\left(x+1\right)^2=\left(2x+3+x+1\right)\left(2x+3-x-1\right)=\left(3x+4\right)\left(x+2\right)\)