cho a,b,c là 3 số nguyên dương thỏa mãn.tổng của 160 và bình phương của của a bằng tổng của 5 và bình phương của b
Tổng của 320 và bình phương của a bằng tổng của 5 và bình phương của c .
Tìm a
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lấy F thuộc AB sao cho AF = AC
Xét tam giác AFM và AMC ta có:
AM: chung
AF = AC
góc AFM = MAC
=> \(_{\Delta AFM=\Delta AMC}\) (c-g-c)
=> MF = MC
Trong tam giác MBF có: MB - MF < BF
Mà MF = MC => MB - MC < BF
Mà BF = AB - AF = AB - AC
Vậy AB - AC > MB - MC (đpcm)
a) \(x^2+3x+2\)
\(=\left(x^2+2x\right)+\left(x+2\right)\)
\(=x\left(x+2\right)+\left(x+2\right)\)
\(=\left(x+1\right)\left(x+2\right)\)
b) \(x^2+5x+6\)
\(=\left(x^2+2x\right)+\left(3x+6\right)\)
\(=x\left(x+2\right)+3\left(x+2\right)\)
\(=\left(x+3\right)\left(x+2\right)\)
c) \(x^2+5x+6\)
( giống câu b -_- )
d) \(x^2+7x+12\)
\(=\left(x^2+4x\right)+\left(3x+12\right)\)
\(=x\left(x+4\right)+3\left(x+4\right)\)
\(=\left(x+3\right)\left(x+4\right)\)
\(1,x^2+3x+2\)
\(=x^2+x+2x+2\)
\(=x\left(x+1\right)+2\left(x+1\right)\)
\(=\left(x+2\right)\left(x+1\right)\)
\(2,x^2+5x+6\)
\(=x^2+2x+3x+6\)
\(=x\left(x+2\right)+3\left(x+2\right)\)
\(=\left(x+3\right)\left(x+2\right)\)
\(4,x^2+7x+12\)
\(=x^2+3x+4x+12\)
\(=x\left(x+3\right)+4\left(x+3\right)\)
\(=\left(x+4\right)\left(x+3\right)\)
\(5,x^2-4x+3\)
\(=x^2-x-3x+3\)
\(=x\left(x-1\right)-3\left(x-1\right)\)
\(=\left(x-3\right)\left(x-1\right)\)
\(6,x^2+3x-4\)
\(=x^2-x+4x-4\)
\(=x\left(x-1\right)+4\left(x-1\right)\)
\(=\left(x+4\right)\left(x-1\right)\)
\(8,x^2-3x-10\)
\(=x^2-5x+2x-10\)
\(=x\left(x-5\right)+2\left(x-5\right)\)
\(=\left(x+2\right)\left(x-5\right)\)
160+a2=5+b2
<=> b2-a2=155
<=> (b-a)(b+a)=155 (1).
Lại có b-a,b+a là các số nguyên, b-a<b+a (2).
Từ (1),(2) ta có bảng:
b-a 1 5
b+a 155 31
a 77 13
Với a=77 thì c không nguyên (loại).
Với a=13 thì c=22 (t/m).
Vậy a=13.
Chúc bạn học tốt.
\(A=x\left(x+2\right)+y\left(y-2\right)-2xy\)
\(\Leftrightarrow A=x^2+2x+y^2-2y-2xy\)
\(\Leftrightarrow A=\left(x-y\right)^2+2\left(x-y\right)\)
\(\Leftrightarrow A=10^2-2.10\)
\(\Leftrightarrow A=80\)
\(A=x\left(x+2\right)+y\left(y-2\right)-2xy\)
\(=x^2+2x+y^2-2y-2xy\)
\(=\left(x^2-2xy+y^2\right)+\left(2x-2y\right)\)
\(=\left(x-y\right)^2+2\left(x-y\right)\)
\(=10^2+2.10=120\)
1, \(x^2+4x-2xy-4y+y^2=\left(x^2-2xy+y^2\right)+\left(4x-4y\right)=\left(x-y\right)^2+4\left(x-y\right)=\left(x-y\right)\left(x-y+4\right)\)
2, \(x^3-2x^2+x=x\left(x^2-2x+1\right)=x\left(x-1\right)^2\)
3, \(2x^2+4x+2-2y^2=2\left(x^2-y^2\right)+2\left(2x+1\right)=2\left(x^2+2x+1-y^2\right)=2\left[\left(x+1\right)^2-y^2\right]=2\left(x+1-y\right)\left(x+1+y\right)\)
4, \(x^4-2x^2=x^4-2x^2+1-1=\left(x^2-1\right)^2-1=\left(x^2-1-1\right)\left(x^2-1+1\right)=\left(x^2-2\right)x^2\)
5, \(x^3+2x^2y+xy^2-9x=x\left(x^2+2xy+y^2-9\right)=x\left[\left(x+y\right)^2-3^2\right]=x\left(x+y-3\right)\left(x+y+3\right)\)
6, \(x^3-\frac{1}{4}x=x\left(x^2-\frac{1}{4}\right)=x\left(x-\frac{1}{2}\right)\left(x+\frac{1}{2}\right)\)
7, \(2x-2y-x^2+2xy-y^2=\left(2x-2y\right)-\left(x^2-2xy+y^2\right)=2\left(x-y\right)-\left(x-y\right)^2=\left(x-y\right)\left(2-x+y\right)\)
8, \(\left(2x+3\right)^2-\left(x+1\right)^2=\left(2x+3+x+1\right)\left(2x+3-x-1\right)=\left(3x+4\right)\left(x+2\right)\)