biết đa thức f(x)=ax^2+bx+c có gia trị nguyên với mọi giá trị của x.CMR
a) c và 2a là các số nguyên
b)khi a =1;b=3;c=4 thì ko có số nguyên x nào để f(x)=2017
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi chân cột điện là A, đỉnh của cột điện là B, đỉnh của bóng cột điện là C. Ta có hình vẽ :
hay :
Vì \(\bigtriangleup ABC\) có AB = AC (= 3m) \(\Rightarrow\) \(\bigtriangleup ABC\) là tam giác cân
mà \(\widehat{BAC}=90^0\Rightarrow\bigtriangleup ABC\) vuông cân tại A
\(\Rightarrow\widehat{ABC}=\widehat{ACB}=\frac{90^0}{2}=45^0\)
Vậy ánh sáng Mặt Trời phải chiếu 1 góc 45o để cái bóng của cột điện dài 3m.
\(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)...\left(\frac{1}{2012^2}-1\right)\)
\(-A=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)...\left(1-\frac{1}{2012^2}\right)\)
\(-A=\frac{3}{2\cdot2}\cdot\frac{8}{3\cdot3}\cdot...\cdot\frac{4048143}{2012\cdot2012}\)
\(-A=\frac{\left(1\cdot3\right)\left(2\cdot4\right)...\left(2011\cdot2013\right)}{\left(2\cdot3\cdot...\cdot2012\right)\left(2\cdot3\cdot...\cdot2012\right)}\)
\(-A=\frac{\left(1\cdot2\cdot...\cdot2011\right)\left(3\cdot4\cdot...\cdot2013\right)}{\left(2\cdot3\cdot...\cdot2012\right)\left(2\cdot3\cdot...\cdot2012\right)}=\frac{1\cdot2013}{2012\cdot2}=\frac{2013}{4024}\)
xét A=ab+ba=10 a+b+10b+a=11(a+b) =>A chia hết cho 11 mà 11 là số nguyên tố A là so chinh phuong=> A chia hết 11^2
=>11(a+b) chia hết 11^2=> a+b chia hết 11 mà a,b là chữ số a,b khác 0=>
TA có bảng sau:
a | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
b | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 |
Gọi M, N, E là giao điểm của AG, BG, CG với BC, CA, AB.
Vì G là trọng tâm của ∆ABC nên
GA = AM; GB = BN; GC = CE (1)
Vì ∆ABC đều nên ba đường trung tuyến ứng với ba cạnh BC, CA, AB bằng nhau
=> AM = BN = CE (2)
Từ (1), (2) => GA = GB = GC
ai trả lời à
ko ai trả lời dc à