B1: Cho tam giác ABC vg tại A.Từ điểm D trên cạnh huyền BC kẻ DE vg với AB và DF vg góc vs AC .CM:
a)FA.AB=EB.AC;FC.AB=EA.AC
b)EA.EB+FA.FC=DB.DC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lấy N là trung điểm của DC ; ta có \(AD=DN=NC\)
Xét tam giác BCD có MN là đường trung bình \(\Rightarrow MN\text{//}BD\) hay \(MN\text{//}ID\)
Xét tam giác AMN có D là trung điểm của AN; ID//MN (cmt) => I là trung điểm của AM
=> ĐPCM
\(\frac{x}{\left(x-y\right)\left(x-z\right)}\) \(+\frac{y}{\left(x-y\right)\left(y-z\right)}\)\(+\frac{z}{\left(y-z\right)\left(z-x\right)}\)
\(=\)\(\frac{x\left(y-z\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}\) \(+\frac{y\left(x-z\right)}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}-\)\(\frac{z\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}\)
\(=\frac{x\left(y-z\right)+y\left(x-z\right)-z\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}\)
\(=\)\(\frac{xy-xz+xy-yz-xz+yz}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}\)
\(=\)\(\frac{2xy-2xz}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}\)
\(=\frac{2x\left(y-z\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}\)
\(=\)\(\frac{2x}{\left(x-y\right)\left(x-z\right)}\)
a) \(x^2+20x+100=\left(x+10\right)^2\)
b) \(y^2-14y+49=\left(y-7\right)^2\)
p/s: chúc bn học tốt
a) \(A=\left(x^2+2\right)^2-\left(x+2\right)\left(x-2\right).\left(x^2+4\right)\)
\(=x^4+4x^2+4-\left(x^2-4\right)\left(x^2+4\right)\)
\(=x^4+4x^2+4-\left(x^4-16\right)\)
\(=x^4+4x^2+4-x^4+16\)
\(=4x^2+20\)
b) Nếu x = -2 thì \(A=4.\left(-2\right)^2+20=36\)
Nếu x = 0 thì \(A=4.0^2+20=20\)
Nếu x = 2 thì \(A=4.2^2+20=36\)
c) Ta có: \(4x^2=\left(2x\right)^2\ge0\left(\forall x\in Z\right)\)
\(\Rightarrow A=4x^2+20\ge20\left(\forall x\in Z\right)\)
Vậy A luôn đạt giá trị dương với mọi giá trị của x