K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2017

Ẹt số xui đưa link cũng bị duyệt

Áp dụng BĐT AM-GM ta có: 

\(\frac{1}{d+1}=1-\frac{d}{d+1}\ge\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\)

\(\ge3\sqrt[3]{\frac{abc}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}}\). TƯơng tự cho 3 BĐT còn lại

\(\frac{1}{a+1}\ge3\sqrt[3]{\frac{bcd}{\left(b+1\right)\left(c+1\right)\left(d+1\right)}};\frac{1}{b+1}\ge3\sqrt[3]{\frac{acd}{\left(a+1\right)\left(c+1\right)\left(d+1\right)}};\frac{1}{c+1}\ge3\sqrt[3]{\frac{abd}{\left(a+1\right)\left(b+1\right)\left(d+1\right)}}\)

Nhân theo vế 4 BDT trên ta có: 

\(\frac{1}{\left(a+1\right)\left(b+1\right)\left(c+1\right)\left(d+1\right)}\ge81\sqrt[3]{\left(\frac{abcd}{\left(a+1\right)\left(b+1\right)\left(c+1\right)\left(d+1\right)}\right)^3}\)

\(\Leftrightarrow\frac{1}{\left(a+1\right)\left(b+1\right)\left(c+1\right)\left(d+1\right)}\ge\frac{81abcd}{\left(a+1\right)\left(b+1\right)\left(c+1\right)\left(d+1\right)}\)

Hay ta có ĐPCM

16 tháng 6 2017

A\(\left(3-\sqrt{3}\right)\left(-2\sqrt{3}\right)+\left(3\sqrt{3}+1\right)^2\)=\(6-6\sqrt{3}+9+6\sqrt{3}+1\)

                                                                                 =16

B,\(\left(3\sqrt{5}-2\sqrt{3}\right)\sqrt{5}+\sqrt{60}\) =\(15-2\sqrt{15}+2\sqrt{15}=15\)

15 tháng 6 2017

Ta có: \(A=\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{120}+\sqrt{121}}\)

\(=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{121}-\sqrt{120}\)

\(=\sqrt{121}-1=11-1=10\)

Lại có đánh giá: \(\frac{1}{\sqrt{k}}=\frac{2}{2\sqrt{k}}>\frac{2}{\sqrt{k+1}+\sqrt{k}}\left(k>1\right)\)

\(\frac{1}{\sqrt{k}}>\frac{2\left(\sqrt{k+1}-\sqrt{k}\right)}{k+1-k}=2\left(\sqrt{k+1}-\sqrt{k}\right)\)

SUy ra \(B>1+2\left(\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{36}-\sqrt{35}\right)\)

\(=1+2\left(\sqrt{36}-\sqrt{2}\right)>1+2\left(6-1\right)=10=A\)

Nên B>A

Phương trình trên có nghiệm bằng 1

Ta có thể phần tích thành ( x - 1 ) f(x)  bằng 0

\(\sqrt{5x^2+6x+5}-4=\frac{64x^3+4x}{5x^2+6x+6}-4\)

Bạn trục căn thức là ra ( x- 1)

16 tháng 6 2017

đặt \(t=\sqrt{5x^2+6x+5}\). khi đó pt tương đương:

\(t=\frac{64x^3+4x}{t^2+1}\)hay \(t^3+t=64x^3+4x\Leftrightarrow\left(64x^3-t^3\right)+\left(4x-t\right)=0\)

\(\left(4x-t\right)\left(16t^2+4xt+2\right)\)

đến đây tự giải tiếp bạn nhé.
 

Nhẩm nghiệm bằng 1,5 nha bạn

Phương trình trở thành :

\(x\sqrt{2x-2}-1,5=9-5x-1,5\)

Bạn trục căn thức sẽ được ( x - 1,5 )

26 tháng 6 2017

Bạn trục căn thức sẽ được ( x - 1,5 )

Vào lúc: 2017-06-15 21:45:18 Xem câu hỏi

Phương trình trên có nghiệm bằng 1

Ta có thể phần tích thành ( x - 1 ) f(x)  bằng 0

15 tháng 6 2017

D = 1,815863713 NHA  Cẩm Tú ! ! !

K VÀ KB NHÉ ! ! !

15 tháng 6 2017

cách giải pn ơi

15 tháng 6 2017

hai người cùng làm chung 1 cv mất 8 giờ nên 1 giờ 2 người làm đc:

                     1:8=1/8 (cv)

hai người cùng làm trong 3 giờ được:

                     1/8.3=3/8 (cv)

vì người thứ 1 làm trong 2 giờ rồi hai người làm trong 3 giờ đc 50% cv nên người thứ nhất làm việc trong 2 giờ thì xong

                      50%-3/8=1/8 (cv)

1 giờ người thứ 1 làm đc

                      1/8:2=1/16 (cv)

1 giờ người thứ 2 làm đc:

                       1/8-1/16=1/16 (cv)

vì 1 giờ 2 người làm một mình thì xong 1/16 cv nên thời gian để 2 người làm xong cv đó một mình là

                       1:1/16=16 (giờ)

đáp số ..................................................................

ps: e nhớ là bài này e học từ hồi lớp 5 rồi

15 tháng 6 2017

vì \(c\le a\)nên \(\frac{1}{\left(c+1\right)^2}\ge\frac{1}{\left(a+1\right)^2}\)

\(VT\ge\frac{2}{\left(a+1\right)^2}+\frac{2}{\left(b+1\right)^2}+\frac{2}{\left(c+1\right)^2}\)

Áp dụng BĐT AM-GM: \(\frac{1}{\left(a+1\right)^2}+\frac{1}{\left(b+1\right)^2}+\frac{1}{\left(c+1\right)^2}\ge\frac{1}{\left(a+1\right)\left(b+1\right)}+\frac{1}{\left(b+1\right)\left(c+1\right)}+\frac{1}{\left(c+1\right)\left(a+1\right)}\)

\(=\frac{a+b+c+3}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}=\frac{a+b+c+3}{abc+a+b+c+4}\)(*)

Từ giả thiết: ab+bc+ca=3.Áp dụng BĐT AM-GM:\(3=ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}\Leftrightarrow abc\le1\)

và có BĐT \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)=9\)\(\Leftrightarrow a+b+c\ge3\)

\(\Rightarrow a+b+c\ge3\ge3abc\)

từ (*): \(\frac{a+b+c+3}{abc+a+b+c+4}\ge\frac{a+b+c+3}{\frac{a+b+c}{3}+a+b+c+4}=\frac{3\left(a+b+c+3\right)}{4\left(a+b+c\right)+12}=\frac{3}{4}\)

do đó \(VT\ge2.\frac{3}{4}=\frac{3}{2}\)

Dấu = xảy ra khi a=b=c=1

nguồn: Hữu Đạt 

15 tháng 6 2017

thử đổi biến từ (a,b,c)->(y/x,z/y,x/z) 

15 tháng 6 2017

Đặt \(B=\frac{\sqrt{11+\sqrt{5}}+\sqrt{11-\sqrt{5}}}{\sqrt{11+2\sqrt{29}}}\)Ta có B>0

\(B^2=2\Rightarrow B=\sqrt{2}\)

Vậy \(A=\sqrt{2}+\sqrt{\left(2-\sqrt{2}\right)^2}=2\)