cho a;b;c;d là các số thực dương thỏa mãn \(\frac{a}{1+a}+\frac{b}{1+b}+\frac{c}{1+c}+\frac{d}{1+d}\le1\)CMR:\(abcd\le\frac{1}{81}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A\(\left(3-\sqrt{3}\right)\left(-2\sqrt{3}\right)+\left(3\sqrt{3}+1\right)^2\)=\(6-6\sqrt{3}+9+6\sqrt{3}+1\)
=16
B,\(\left(3\sqrt{5}-2\sqrt{3}\right)\sqrt{5}+\sqrt{60}\) =\(15-2\sqrt{15}+2\sqrt{15}=15\)
Ta có: \(A=\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{120}+\sqrt{121}}\)
\(=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{121}-\sqrt{120}\)
\(=\sqrt{121}-1=11-1=10\)
Lại có đánh giá: \(\frac{1}{\sqrt{k}}=\frac{2}{2\sqrt{k}}>\frac{2}{\sqrt{k+1}+\sqrt{k}}\left(k>1\right)\)
\(\frac{1}{\sqrt{k}}>\frac{2\left(\sqrt{k+1}-\sqrt{k}\right)}{k+1-k}=2\left(\sqrt{k+1}-\sqrt{k}\right)\)
SUy ra \(B>1+2\left(\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{36}-\sqrt{35}\right)\)
\(=1+2\left(\sqrt{36}-\sqrt{2}\right)>1+2\left(6-1\right)=10=A\)
Nên B>A
Phương trình trên có nghiệm bằng 1
Ta có thể phần tích thành ( x - 1 ) f(x) bằng 0
\(\sqrt{5x^2+6x+5}-4=\frac{64x^3+4x}{5x^2+6x+6}-4\)
Bạn trục căn thức là ra ( x- 1)
đặt \(t=\sqrt{5x^2+6x+5}\). khi đó pt tương đương:
\(t=\frac{64x^3+4x}{t^2+1}\)hay \(t^3+t=64x^3+4x\Leftrightarrow\left(64x^3-t^3\right)+\left(4x-t\right)=0\)
\(\left(4x-t\right)\left(16t^2+4xt+2\right)\)
đến đây tự giải tiếp bạn nhé.
Nhẩm nghiệm bằng 1,5 nha bạn
Phương trình trở thành :
\(x\sqrt{2x-2}-1,5=9-5x-1,5\)
Bạn trục căn thức sẽ được ( x - 1,5 )
hai người cùng làm chung 1 cv mất 8 giờ nên 1 giờ 2 người làm đc:
1:8=1/8 (cv)
hai người cùng làm trong 3 giờ được:
1/8.3=3/8 (cv)
vì người thứ 1 làm trong 2 giờ rồi hai người làm trong 3 giờ đc 50% cv nên người thứ nhất làm việc trong 2 giờ thì xong
50%-3/8=1/8 (cv)
1 giờ người thứ 1 làm đc
1/8:2=1/16 (cv)
1 giờ người thứ 2 làm đc:
1/8-1/16=1/16 (cv)
vì 1 giờ 2 người làm một mình thì xong 1/16 cv nên thời gian để 2 người làm xong cv đó một mình là
1:1/16=16 (giờ)
đáp số ..................................................................
ps: e nhớ là bài này e học từ hồi lớp 5 rồi
vì \(c\le a\)nên \(\frac{1}{\left(c+1\right)^2}\ge\frac{1}{\left(a+1\right)^2}\)
\(VT\ge\frac{2}{\left(a+1\right)^2}+\frac{2}{\left(b+1\right)^2}+\frac{2}{\left(c+1\right)^2}\)
Áp dụng BĐT AM-GM: \(\frac{1}{\left(a+1\right)^2}+\frac{1}{\left(b+1\right)^2}+\frac{1}{\left(c+1\right)^2}\ge\frac{1}{\left(a+1\right)\left(b+1\right)}+\frac{1}{\left(b+1\right)\left(c+1\right)}+\frac{1}{\left(c+1\right)\left(a+1\right)}\)
\(=\frac{a+b+c+3}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}=\frac{a+b+c+3}{abc+a+b+c+4}\)(*)
Từ giả thiết: ab+bc+ca=3.Áp dụng BĐT AM-GM:\(3=ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}\Leftrightarrow abc\le1\)
và có BĐT \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)=9\)\(\Leftrightarrow a+b+c\ge3\)
\(\Rightarrow a+b+c\ge3\ge3abc\)
từ (*): \(\frac{a+b+c+3}{abc+a+b+c+4}\ge\frac{a+b+c+3}{\frac{a+b+c}{3}+a+b+c+4}=\frac{3\left(a+b+c+3\right)}{4\left(a+b+c\right)+12}=\frac{3}{4}\)
do đó \(VT\ge2.\frac{3}{4}=\frac{3}{2}\)
Dấu = xảy ra khi a=b=c=1
nguồn: Hữu Đạt
Ẹt số xui đưa link cũng bị duyệt
Áp dụng BĐT AM-GM ta có:
\(\frac{1}{d+1}=1-\frac{d}{d+1}\ge\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\)
\(\ge3\sqrt[3]{\frac{abc}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}}\). TƯơng tự cho 3 BĐT còn lại
\(\frac{1}{a+1}\ge3\sqrt[3]{\frac{bcd}{\left(b+1\right)\left(c+1\right)\left(d+1\right)}};\frac{1}{b+1}\ge3\sqrt[3]{\frac{acd}{\left(a+1\right)\left(c+1\right)\left(d+1\right)}};\frac{1}{c+1}\ge3\sqrt[3]{\frac{abd}{\left(a+1\right)\left(b+1\right)\left(d+1\right)}}\)
Nhân theo vế 4 BDT trên ta có:
\(\frac{1}{\left(a+1\right)\left(b+1\right)\left(c+1\right)\left(d+1\right)}\ge81\sqrt[3]{\left(\frac{abcd}{\left(a+1\right)\left(b+1\right)\left(c+1\right)\left(d+1\right)}\right)^3}\)
\(\Leftrightarrow\frac{1}{\left(a+1\right)\left(b+1\right)\left(c+1\right)\left(d+1\right)}\ge\frac{81abcd}{\left(a+1\right)\left(b+1\right)\left(c+1\right)\left(d+1\right)}\)
Hay ta có ĐPCM